Stem cells do not play a significant role in repopulation of adult human cardiomyocytes
Currently, there are two points of view on the ability of adult human heart to regenerate. One of them holds that the myocardium has a poor ability to regenerate. According to the other, the myocardium can rapidly regenerate due to the presence of resident stem cells in it. The purpose of this study...
Gespeichert in:
Veröffentlicht in: | Cell and tissue biology 2016-03, Vol.10 (2), p.114-121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | 2 |
container_start_page | 114 |
container_title | Cell and tissue biology |
container_volume | 10 |
creator | Baidyuk, E. V. Gudkova, A. Ya Sakuta, G. A. Semernin, E. N. Stepanov, A. V. Kudryavtsev, B. N. |
description | Currently, there are two points of view on the ability of adult human heart to regenerate. One of them holds that the myocardium has a poor ability to regenerate. According to the other, the myocardium can rapidly regenerate due to the presence of resident stem cells in it. The purpose of this study was to test these hypotheses by investigating the distribution of cardiomyocytes by size and ploidy in human beings of different age. Using cytofluorometry and interferometry, we determined the dry weight, volume, and ploidy of myocytes isolated from the left ventricle of a normal heart of 12 men at the age of 20–30 (
n
= 7) and 40–50 (
n
= 5) years. The mean dry weight of cardiomyocytes was 6906 ± 182 pg (10
–12
g) in the 20- to 30-yearold men and 9126 ± 263 pg in 40- to 50-year-old men; the myocyte volume was 55250 ± 1457 and 73005 ± 2106 µm
3
, respectively. Cells with volumes intermediate between the cells at the stage of “dividing myocytes” and mature myocytes were absent. The number of cardiomyocytes in the left ventricle was (3.18 ± 0.05) × 10
9
in the 20–30-year-old age group and (2.06 ± 0.6) × 10
9
in the 40–50-year-old group. The largest subset (41.3%) of the myocyte population was represented by mononuclear cells with tetraploid nuclei. The proportion of myocytes of different ploidy classes and their mean ploidy did not change in the range of 20–50 years. On the basis on these data, we concluded that stem cells do not play a significant role in restoring the number of lost myocytes. Hypertrophy of myocytes caused by the increase in their cytoplasm is the main mechanism of compensation of the function of the left ventricle of the heart in aging human beings. |
doi_str_mv | 10.1134/S1990519X16020036 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1990519X16020036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1990519X16020036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2036-8749e416bf9590ac615ee5b0075c5bc630b0775bcee9287ef92d9aca12638b343</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AoF1HDv1EVX8VKrEoSC4RY6zKa4cO7KTQ96eVIUTEqcd7ey3Gg0htwzuGOPF_Y4pBYKpTyYhB-DyjCyOq0zkwM9_9exfkquUDgASCgYL8rEbsKMGnUu0CdSHgfZOT1TTZPfettZoP9AYHFLracQ-9KPTgw2ehpbqZnQD_Ro77anRsbGhm4KZBkzX5KLVLuHNz1yS96fHt_VLtn193qwftpmZc8lsVRYKCybrVgkF2kgmEEUNUAojaiM51FCWs0JU-arEVuWN0kazXPJVzQu-JOz018SQUsS26qPtdJwqBtWxmepPMzOTn5g03_o9xuoQxujnmP9A3xHTZj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stem cells do not play a significant role in repopulation of adult human cardiomyocytes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baidyuk, E. V. ; Gudkova, A. Ya ; Sakuta, G. A. ; Semernin, E. N. ; Stepanov, A. V. ; Kudryavtsev, B. N.</creator><creatorcontrib>Baidyuk, E. V. ; Gudkova, A. Ya ; Sakuta, G. A. ; Semernin, E. N. ; Stepanov, A. V. ; Kudryavtsev, B. N.</creatorcontrib><description>Currently, there are two points of view on the ability of adult human heart to regenerate. One of them holds that the myocardium has a poor ability to regenerate. According to the other, the myocardium can rapidly regenerate due to the presence of resident stem cells in it. The purpose of this study was to test these hypotheses by investigating the distribution of cardiomyocytes by size and ploidy in human beings of different age. Using cytofluorometry and interferometry, we determined the dry weight, volume, and ploidy of myocytes isolated from the left ventricle of a normal heart of 12 men at the age of 20–30 (
n
= 7) and 40–50 (
n
= 5) years. The mean dry weight of cardiomyocytes was 6906 ± 182 pg (10
–12
g) in the 20- to 30-yearold men and 9126 ± 263 pg in 40- to 50-year-old men; the myocyte volume was 55250 ± 1457 and 73005 ± 2106 µm
3
, respectively. Cells with volumes intermediate between the cells at the stage of “dividing myocytes” and mature myocytes were absent. The number of cardiomyocytes in the left ventricle was (3.18 ± 0.05) × 10
9
in the 20–30-year-old age group and (2.06 ± 0.6) × 10
9
in the 40–50-year-old group. The largest subset (41.3%) of the myocyte population was represented by mononuclear cells with tetraploid nuclei. The proportion of myocytes of different ploidy classes and their mean ploidy did not change in the range of 20–50 years. On the basis on these data, we concluded that stem cells do not play a significant role in restoring the number of lost myocytes. Hypertrophy of myocytes caused by the increase in their cytoplasm is the main mechanism of compensation of the function of the left ventricle of the heart in aging human beings.</description><identifier>ISSN: 1990-519X</identifier><identifier>EISSN: 1990-5203</identifier><identifier>DOI: 10.1134/S1990519X16020036</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Biomedical and Life Sciences ; Cell Biology ; Life Sciences</subject><ispartof>Cell and tissue biology, 2016-03, Vol.10 (2), p.114-121</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2036-8749e416bf9590ac615ee5b0075c5bc630b0775bcee9287ef92d9aca12638b343</citedby><cites>FETCH-LOGICAL-c2036-8749e416bf9590ac615ee5b0075c5bc630b0775bcee9287ef92d9aca12638b343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990519X16020036$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990519X16020036$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Baidyuk, E. V.</creatorcontrib><creatorcontrib>Gudkova, A. Ya</creatorcontrib><creatorcontrib>Sakuta, G. A.</creatorcontrib><creatorcontrib>Semernin, E. N.</creatorcontrib><creatorcontrib>Stepanov, A. V.</creatorcontrib><creatorcontrib>Kudryavtsev, B. N.</creatorcontrib><title>Stem cells do not play a significant role in repopulation of adult human cardiomyocytes</title><title>Cell and tissue biology</title><addtitle>Cell Tiss. Biol</addtitle><description>Currently, there are two points of view on the ability of adult human heart to regenerate. One of them holds that the myocardium has a poor ability to regenerate. According to the other, the myocardium can rapidly regenerate due to the presence of resident stem cells in it. The purpose of this study was to test these hypotheses by investigating the distribution of cardiomyocytes by size and ploidy in human beings of different age. Using cytofluorometry and interferometry, we determined the dry weight, volume, and ploidy of myocytes isolated from the left ventricle of a normal heart of 12 men at the age of 20–30 (
n
= 7) and 40–50 (
n
= 5) years. The mean dry weight of cardiomyocytes was 6906 ± 182 pg (10
–12
g) in the 20- to 30-yearold men and 9126 ± 263 pg in 40- to 50-year-old men; the myocyte volume was 55250 ± 1457 and 73005 ± 2106 µm
3
, respectively. Cells with volumes intermediate between the cells at the stage of “dividing myocytes” and mature myocytes were absent. The number of cardiomyocytes in the left ventricle was (3.18 ± 0.05) × 10
9
in the 20–30-year-old age group and (2.06 ± 0.6) × 10
9
in the 40–50-year-old group. The largest subset (41.3%) of the myocyte population was represented by mononuclear cells with tetraploid nuclei. The proportion of myocytes of different ploidy classes and their mean ploidy did not change in the range of 20–50 years. On the basis on these data, we concluded that stem cells do not play a significant role in restoring the number of lost myocytes. Hypertrophy of myocytes caused by the increase in their cytoplasm is the main mechanism of compensation of the function of the left ventricle of the heart in aging human beings.</description><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Life Sciences</subject><issn>1990-519X</issn><issn>1990-5203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AoF1HDv1EVX8VKrEoSC4RY6zKa4cO7KTQ96eVIUTEqcd7ey3Gg0htwzuGOPF_Y4pBYKpTyYhB-DyjCyOq0zkwM9_9exfkquUDgASCgYL8rEbsKMGnUu0CdSHgfZOT1TTZPfettZoP9AYHFLracQ-9KPTgw2ehpbqZnQD_Ro77anRsbGhm4KZBkzX5KLVLuHNz1yS96fHt_VLtn193qwftpmZc8lsVRYKCybrVgkF2kgmEEUNUAojaiM51FCWs0JU-arEVuWN0kazXPJVzQu-JOz018SQUsS26qPtdJwqBtWxmepPMzOTn5g03_o9xuoQxujnmP9A3xHTZj8</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Baidyuk, E. V.</creator><creator>Gudkova, A. Ya</creator><creator>Sakuta, G. A.</creator><creator>Semernin, E. N.</creator><creator>Stepanov, A. V.</creator><creator>Kudryavtsev, B. N.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160301</creationdate><title>Stem cells do not play a significant role in repopulation of adult human cardiomyocytes</title><author>Baidyuk, E. V. ; Gudkova, A. Ya ; Sakuta, G. A. ; Semernin, E. N. ; Stepanov, A. V. ; Kudryavtsev, B. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2036-8749e416bf9590ac615ee5b0075c5bc630b0775bcee9287ef92d9aca12638b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baidyuk, E. V.</creatorcontrib><creatorcontrib>Gudkova, A. Ya</creatorcontrib><creatorcontrib>Sakuta, G. A.</creatorcontrib><creatorcontrib>Semernin, E. N.</creatorcontrib><creatorcontrib>Stepanov, A. V.</creatorcontrib><creatorcontrib>Kudryavtsev, B. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Cell and tissue biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baidyuk, E. V.</au><au>Gudkova, A. Ya</au><au>Sakuta, G. A.</au><au>Semernin, E. N.</au><au>Stepanov, A. V.</au><au>Kudryavtsev, B. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stem cells do not play a significant role in repopulation of adult human cardiomyocytes</atitle><jtitle>Cell and tissue biology</jtitle><stitle>Cell Tiss. Biol</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>114</spage><epage>121</epage><pages>114-121</pages><issn>1990-519X</issn><eissn>1990-5203</eissn><abstract>Currently, there are two points of view on the ability of adult human heart to regenerate. One of them holds that the myocardium has a poor ability to regenerate. According to the other, the myocardium can rapidly regenerate due to the presence of resident stem cells in it. The purpose of this study was to test these hypotheses by investigating the distribution of cardiomyocytes by size and ploidy in human beings of different age. Using cytofluorometry and interferometry, we determined the dry weight, volume, and ploidy of myocytes isolated from the left ventricle of a normal heart of 12 men at the age of 20–30 (
n
= 7) and 40–50 (
n
= 5) years. The mean dry weight of cardiomyocytes was 6906 ± 182 pg (10
–12
g) in the 20- to 30-yearold men and 9126 ± 263 pg in 40- to 50-year-old men; the myocyte volume was 55250 ± 1457 and 73005 ± 2106 µm
3
, respectively. Cells with volumes intermediate between the cells at the stage of “dividing myocytes” and mature myocytes were absent. The number of cardiomyocytes in the left ventricle was (3.18 ± 0.05) × 10
9
in the 20–30-year-old age group and (2.06 ± 0.6) × 10
9
in the 40–50-year-old group. The largest subset (41.3%) of the myocyte population was represented by mononuclear cells with tetraploid nuclei. The proportion of myocytes of different ploidy classes and their mean ploidy did not change in the range of 20–50 years. On the basis on these data, we concluded that stem cells do not play a significant role in restoring the number of lost myocytes. Hypertrophy of myocytes caused by the increase in their cytoplasm is the main mechanism of compensation of the function of the left ventricle of the heart in aging human beings.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990519X16020036</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-519X |
ispartof | Cell and tissue biology, 2016-03, Vol.10 (2), p.114-121 |
issn | 1990-519X 1990-5203 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1990519X16020036 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Cell Biology Life Sciences |
title | Stem cells do not play a significant role in repopulation of adult human cardiomyocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stem%20cells%20do%20not%20play%20a%20significant%20role%20in%20repopulation%20of%20adult%20human%20cardiomyocytes&rft.jtitle=Cell%20and%20tissue%20biology&rft.au=Baidyuk,%20E.%20V.&rft.date=2016-03-01&rft.volume=10&rft.issue=2&rft.spage=114&rft.epage=121&rft.pages=114-121&rft.issn=1990-519X&rft.eissn=1990-5203&rft_id=info:doi/10.1134/S1990519X16020036&rft_dat=%3Ccrossref_sprin%3E10_1134_S1990519X16020036%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |