On the dynamical coherence of structurally stable 3-diffeomorphisms
We prove that each structurally stable diffeomorphism f on a closed 3-manifold M 3 with a two-dimensional surface nonwandering set is topologically conjugated to some model dynamically coherent diffeomorphism.
Gespeichert in:
Veröffentlicht in: | Regular & chaotic dynamics 2014-07, Vol.19 (4), p.506-512 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 512 |
---|---|
container_issue | 4 |
container_start_page | 506 |
container_title | Regular & chaotic dynamics |
container_volume | 19 |
creator | Grines, Vyacheslav Z. Levchenko, Yulia A. Medvedev, Vladislav S. Pochinka, Olga V. |
description | We prove that each structurally stable diffeomorphism
f
on a closed 3-manifold
M
3
with a two-dimensional surface nonwandering set is topologically conjugated to some model dynamically coherent diffeomorphism. |
doi_str_mv | 10.1134/S1560354714040066 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1560354714040066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1560354714040066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-10b120263be9ac07a51d7098c81756a94a53b445b8e768f6b4c665562b1b0b5d3</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRcBz9AHf9A9GqpF9ZSvAxMDALdR26O90mQx5Dd7LI35swLgTBVd261LkUl5B7hAfEjD2-IxeQcSaRAQMQ4oJsVitZvctf-prcxHgEQK4kbEhx6OlYO1rNve4aq1tqh9oF11tHB0_jGCY7TkG37bws2rSOZknVeO-GbginuoldvCVXXrfR3f3MLfl8ef4o3pL94XVXPO0Tmyo1JggGU0hFZlyuLUjNsZKQK6tQcqFzpnlmGONGOSmUF4ZZITgXqUEDhlfZluA514YhxuB8eQpNp8NcIpRrC-WfFhYmPTNxue2_XCiPwxT65c1_oG9hqF35</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the dynamical coherence of structurally stable 3-diffeomorphisms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Grines, Vyacheslav Z. ; Levchenko, Yulia A. ; Medvedev, Vladislav S. ; Pochinka, Olga V.</creator><creatorcontrib>Grines, Vyacheslav Z. ; Levchenko, Yulia A. ; Medvedev, Vladislav S. ; Pochinka, Olga V.</creatorcontrib><description>We prove that each structurally stable diffeomorphism
f
on a closed 3-manifold
M
3
with a two-dimensional surface nonwandering set is topologically conjugated to some model dynamically coherent diffeomorphism.</description><identifier>ISSN: 1560-3547</identifier><identifier>EISSN: 1560-3547</identifier><identifier>EISSN: 1468-4845</identifier><identifier>DOI: 10.1134/S1560354714040066</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics</subject><ispartof>Regular & chaotic dynamics, 2014-07, Vol.19 (4), p.506-512</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-10b120263be9ac07a51d7098c81756a94a53b445b8e768f6b4c665562b1b0b5d3</citedby><cites>FETCH-LOGICAL-c288t-10b120263be9ac07a51d7098c81756a94a53b445b8e768f6b4c665562b1b0b5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1560354714040066$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1560354714040066$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Grines, Vyacheslav Z.</creatorcontrib><creatorcontrib>Levchenko, Yulia A.</creatorcontrib><creatorcontrib>Medvedev, Vladislav S.</creatorcontrib><creatorcontrib>Pochinka, Olga V.</creatorcontrib><title>On the dynamical coherence of structurally stable 3-diffeomorphisms</title><title>Regular & chaotic dynamics</title><addtitle>Regul. Chaot. Dyn</addtitle><description>We prove that each structurally stable diffeomorphism
f
on a closed 3-manifold
M
3
with a two-dimensional surface nonwandering set is topologically conjugated to some model dynamically coherent diffeomorphism.</description><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1560-3547</issn><issn>1560-3547</issn><issn>1468-4845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxEAQRRtRcBz9AHf9A9GqpF9ZSvAxMDALdR26O90mQx5Dd7LI35swLgTBVd261LkUl5B7hAfEjD2-IxeQcSaRAQMQ4oJsVitZvctf-prcxHgEQK4kbEhx6OlYO1rNve4aq1tqh9oF11tHB0_jGCY7TkG37bws2rSOZknVeO-GbginuoldvCVXXrfR3f3MLfl8ef4o3pL94XVXPO0Tmyo1JggGU0hFZlyuLUjNsZKQK6tQcqFzpnlmGONGOSmUF4ZZITgXqUEDhlfZluA514YhxuB8eQpNp8NcIpRrC-WfFhYmPTNxue2_XCiPwxT65c1_oG9hqF35</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Grines, Vyacheslav Z.</creator><creator>Levchenko, Yulia A.</creator><creator>Medvedev, Vladislav S.</creator><creator>Pochinka, Olga V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140701</creationdate><title>On the dynamical coherence of structurally stable 3-diffeomorphisms</title><author>Grines, Vyacheslav Z. ; Levchenko, Yulia A. ; Medvedev, Vladislav S. ; Pochinka, Olga V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-10b120263be9ac07a51d7098c81756a94a53b445b8e768f6b4c665562b1b0b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grines, Vyacheslav Z.</creatorcontrib><creatorcontrib>Levchenko, Yulia A.</creatorcontrib><creatorcontrib>Medvedev, Vladislav S.</creatorcontrib><creatorcontrib>Pochinka, Olga V.</creatorcontrib><collection>CrossRef</collection><jtitle>Regular & chaotic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grines, Vyacheslav Z.</au><au>Levchenko, Yulia A.</au><au>Medvedev, Vladislav S.</au><au>Pochinka, Olga V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the dynamical coherence of structurally stable 3-diffeomorphisms</atitle><jtitle>Regular & chaotic dynamics</jtitle><stitle>Regul. Chaot. Dyn</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>19</volume><issue>4</issue><spage>506</spage><epage>512</epage><pages>506-512</pages><issn>1560-3547</issn><eissn>1560-3547</eissn><eissn>1468-4845</eissn><abstract>We prove that each structurally stable diffeomorphism
f
on a closed 3-manifold
M
3
with a two-dimensional surface nonwandering set is topologically conjugated to some model dynamically coherent diffeomorphism.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1560354714040066</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1560-3547 |
ispartof | Regular & chaotic dynamics, 2014-07, Vol.19 (4), p.506-512 |
issn | 1560-3547 1560-3547 1468-4845 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1560354714040066 |
source | SpringerLink Journals - AutoHoldings |
subjects | Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics |
title | On the dynamical coherence of structurally stable 3-diffeomorphisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20dynamical%20coherence%20of%20structurally%20stable%203-diffeomorphisms&rft.jtitle=Regular%20&%20chaotic%20dynamics&rft.au=Grines,%20Vyacheslav%20Z.&rft.date=2014-07-01&rft.volume=19&rft.issue=4&rft.spage=506&rft.epage=512&rft.pages=506-512&rft.issn=1560-3547&rft.eissn=1560-3547&rft_id=info:doi/10.1134/S1560354714040066&rft_dat=%3Ccrossref_sprin%3E10_1134_S1560354714040066%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |