Boundary criterion for integral operators

Integral operators of the form for the case of a finite domain Ω ⊂ R n with smooth boundary ∂Ω are considered. Conditions on the real kernel K ( x , t ) of an integral operator under which this operator satisfies a well-defined boundary condition for the corresponding differential equation are found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2016, Vol.93 (1), p.58-61
Hauptverfasser: Kal’menov, T. Sh, Otelbaev, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue 1
container_start_page 58
container_title Doklady. Mathematics
container_volume 93
creator Kal’menov, T. Sh
Otelbaev, M.
description Integral operators of the form for the case of a finite domain Ω ⊂ R n with smooth boundary ∂Ω are considered. Conditions on the real kernel K ( x , t ) of an integral operator under which this operator satisfies a well-defined boundary condition for the corresponding differential equation are found. The application of the results is demonstrated on the example of a Sturm–Liouville equation, for which the derivation of the general form of well-posed boundary value problems is presented.
doi_str_mv 10.1134/S1064562416010208
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1064562416010208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1064562416010208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-19cbbe536ff426d339de520359cabd61bb145c5aa0245ca45a28de41f3245e553</originalsourceid><addsrcrecordid>eNp9T7tOAzEQtBBIhIQPoLuWwrDrl-5KiHhJkSgg9cnnR3RRsKP1peDvcRQ6JKrZ1ezszDB2g3CHKNX9B4JR2giFBhAEtGdshloib6UR53WuND_yl-yqlC2A0gJgxm4f8yF5S9-No3EKNObUxEzNmKawIbtr8j6QnTKVBbuIdlfC9S_O2fr56XP5ylfvL2_LhxV3om0njp0bhqCliVEJ46XsfKhWUnfODt7gMKDSTlsLoqJV2orWB4VR1j1oLecMT38d5VIoxH5P41dN2CP0x679n65VI06aUm_TJlC_zQdKNeY_oh_U_VU3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boundary criterion for integral operators</title><source>Springer Nature - Complete Springer Journals</source><creator>Kal’menov, T. Sh ; Otelbaev, M.</creator><creatorcontrib>Kal’menov, T. Sh ; Otelbaev, M.</creatorcontrib><description>Integral operators of the form for the case of a finite domain Ω ⊂ R n with smooth boundary ∂Ω are considered. Conditions on the real kernel K ( x , t ) of an integral operator under which this operator satisfies a well-defined boundary condition for the corresponding differential equation are found. The application of the results is demonstrated on the example of a Sturm–Liouville equation, for which the derivation of the general form of well-posed boundary value problems is presented.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562416010208</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Doklady. Mathematics, 2016, Vol.93 (1), p.58-61</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-19cbbe536ff426d339de520359cabd61bb145c5aa0245ca45a28de41f3245e553</citedby><cites>FETCH-LOGICAL-c288t-19cbbe536ff426d339de520359cabd61bb145c5aa0245ca45a28de41f3245e553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562416010208$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562416010208$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kal’menov, T. Sh</creatorcontrib><creatorcontrib>Otelbaev, M.</creatorcontrib><title>Boundary criterion for integral operators</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>Integral operators of the form for the case of a finite domain Ω ⊂ R n with smooth boundary ∂Ω are considered. Conditions on the real kernel K ( x , t ) of an integral operator under which this operator satisfies a well-defined boundary condition for the corresponding differential equation are found. The application of the results is demonstrated on the example of a Sturm–Liouville equation, for which the derivation of the general form of well-posed boundary value problems is presented.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9T7tOAzEQtBBIhIQPoLuWwrDrl-5KiHhJkSgg9cnnR3RRsKP1peDvcRQ6JKrZ1ezszDB2g3CHKNX9B4JR2giFBhAEtGdshloib6UR53WuND_yl-yqlC2A0gJgxm4f8yF5S9-No3EKNObUxEzNmKawIbtr8j6QnTKVBbuIdlfC9S_O2fr56XP5ylfvL2_LhxV3om0njp0bhqCliVEJ46XsfKhWUnfODt7gMKDSTlsLoqJV2orWB4VR1j1oLecMT38d5VIoxH5P41dN2CP0x679n65VI06aUm_TJlC_zQdKNeY_oh_U_VU3</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Kal’menov, T. Sh</creator><creator>Otelbaev, M.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>Boundary criterion for integral operators</title><author>Kal’menov, T. Sh ; Otelbaev, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-19cbbe536ff426d339de520359cabd61bb145c5aa0245ca45a28de41f3245e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kal’menov, T. Sh</creatorcontrib><creatorcontrib>Otelbaev, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kal’menov, T. Sh</au><au>Otelbaev, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary criterion for integral operators</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2016</date><risdate>2016</risdate><volume>93</volume><issue>1</issue><spage>58</spage><epage>61</epage><pages>58-61</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>Integral operators of the form for the case of a finite domain Ω ⊂ R n with smooth boundary ∂Ω are considered. Conditions on the real kernel K ( x , t ) of an integral operator under which this operator satisfies a well-defined boundary condition for the corresponding differential equation are found. The application of the results is demonstrated on the example of a Sturm–Liouville equation, for which the derivation of the general form of well-posed boundary value problems is presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562416010208</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2016, Vol.93 (1), p.58-61
issn 1064-5624
1531-8362
language eng
recordid cdi_crossref_primary_10_1134_S1064562416010208
source Springer Nature - Complete Springer Journals
subjects Mathematics
Mathematics and Statistics
title Boundary criterion for integral operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20criterion%20for%20integral%20operators&rft.jtitle=Doklady.%20Mathematics&rft.au=Kal%E2%80%99menov,%20T.%20Sh&rft.date=2016&rft.volume=93&rft.issue=1&rft.spage=58&rft.epage=61&rft.pages=58-61&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562416010208&rft_dat=%3Ccrossref_sprin%3E10_1134_S1064562416010208%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true