Conventional Quantum Statistics with a Probability Distribution Describing Quantum System States

The review of a new probability representation of quantum states is presented, where the states are described by conventional probability distribution functions. The invertible map of the probability distribution onto density operators in the Hilbert space is found using the introduced operators cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of particles and nuclei 2020-07, Vol.51 (4), p.772-780
Hauptverfasser: Man’ko, V. I., Man’ko, O. V., Chernega, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 780
container_issue 4
container_start_page 772
container_title Physics of particles and nuclei
container_volume 51
creator Man’ko, V. I.
Man’ko, O. V.
Chernega, V. N.
description The review of a new probability representation of quantum states is presented, where the states are described by conventional probability distribution functions. The invertible map of the probability distribution onto density operators in the Hilbert space is found using the introduced operators called a quantizer–dequantizer, which specify the invertible map of operators of quantum observables onto functions and a product of the operators onto an associative product (star product) of the functions. Examples of a quantum oscillator and a spin-1/2 particle are considered. The kinetic equations for probabilities, specifying the evolution of the states of a quantum system, which are equivalent to Schrödinger and von Neumann equations, are derived explicitly.
doi_str_mv 10.1134/S1063779620040486
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1063779620040486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063779620040486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-62bb5df103c129c9c987792793fa33e7220afa0476a0087a9fdd31d9a663dc273</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4C0vsDqT7CbZo7RqhYJK9bxms9ma0u5KklX69map4EGQOcwM_3w_w0_IJcIVIs-vVwiCS1kKBpBDrsQRmWDBMVNFUR6nOcnZqJ-SsxA2AIhYqAl5m_Xdp-2i6zu9pc-D7uKwo6uoowvRmUC_XHynmj75vta127q4p_MkeVcPI0TnNpi0uG79S-9DtAcTG87JSau3wV789Cl5vbt9mS2y5eP9w-xmmRmmVMwEq-uiaRG4QVaaVCp9y2TJW825lYyBbjXkUmgAJXXZNg3HptRC8MYwyacED77G9yF421Yf3u2031cI1RhR9SeixLADE9Jtt7a-2vSDT0GEf6BvHitp-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conventional Quantum Statistics with a Probability Distribution Describing Quantum System States</title><source>SpringerLink Journals</source><creator>Man’ko, V. I. ; Man’ko, O. V. ; Chernega, V. N.</creator><creatorcontrib>Man’ko, V. I. ; Man’ko, O. V. ; Chernega, V. N.</creatorcontrib><description>The review of a new probability representation of quantum states is presented, where the states are described by conventional probability distribution functions. The invertible map of the probability distribution onto density operators in the Hilbert space is found using the introduced operators called a quantizer–dequantizer, which specify the invertible map of operators of quantum observables onto functions and a product of the operators onto an associative product (star product) of the functions. Examples of a quantum oscillator and a spin-1/2 particle are considered. The kinetic equations for probabilities, specifying the evolution of the states of a quantum system, which are equivalent to Schrödinger and von Neumann equations, are derived explicitly.</description><identifier>ISSN: 1063-7796</identifier><identifier>EISSN: 1531-8559</identifier><identifier>DOI: 10.1134/S1063779620040486</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>Physics of particles and nuclei, 2020-07, Vol.51 (4), p.772-780</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-62bb5df103c129c9c987792793fa33e7220afa0476a0087a9fdd31d9a663dc273</citedby><cites>FETCH-LOGICAL-c288t-62bb5df103c129c9c987792793fa33e7220afa0476a0087a9fdd31d9a663dc273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063779620040486$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063779620040486$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Man’ko, V. I.</creatorcontrib><creatorcontrib>Man’ko, O. V.</creatorcontrib><creatorcontrib>Chernega, V. N.</creatorcontrib><title>Conventional Quantum Statistics with a Probability Distribution Describing Quantum System States</title><title>Physics of particles and nuclei</title><addtitle>Phys. Part. Nuclei</addtitle><description>The review of a new probability representation of quantum states is presented, where the states are described by conventional probability distribution functions. The invertible map of the probability distribution onto density operators in the Hilbert space is found using the introduced operators called a quantizer–dequantizer, which specify the invertible map of operators of quantum observables onto functions and a product of the operators onto an associative product (star product) of the functions. Examples of a quantum oscillator and a spin-1/2 particle are considered. The kinetic equations for probabilities, specifying the evolution of the states of a quantum system, which are equivalent to Schrödinger and von Neumann equations, are derived explicitly.</description><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>1063-7796</issn><issn>1531-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4C0vsDqT7CbZo7RqhYJK9bxms9ma0u5KklX69map4EGQOcwM_3w_w0_IJcIVIs-vVwiCS1kKBpBDrsQRmWDBMVNFUR6nOcnZqJ-SsxA2AIhYqAl5m_Xdp-2i6zu9pc-D7uKwo6uoowvRmUC_XHynmj75vta127q4p_MkeVcPI0TnNpi0uG79S-9DtAcTG87JSau3wV789Cl5vbt9mS2y5eP9w-xmmRmmVMwEq-uiaRG4QVaaVCp9y2TJW825lYyBbjXkUmgAJXXZNg3HptRC8MYwyacED77G9yF421Yf3u2031cI1RhR9SeixLADE9Jtt7a-2vSDT0GEf6BvHitp-A</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Man’ko, V. I.</creator><creator>Man’ko, O. V.</creator><creator>Chernega, V. N.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Conventional Quantum Statistics with a Probability Distribution Describing Quantum System States</title><author>Man’ko, V. I. ; Man’ko, O. V. ; Chernega, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-62bb5df103c129c9c987792793fa33e7220afa0476a0087a9fdd31d9a663dc273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man’ko, V. I.</creatorcontrib><creatorcontrib>Man’ko, O. V.</creatorcontrib><creatorcontrib>Chernega, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of particles and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man’ko, V. I.</au><au>Man’ko, O. V.</au><au>Chernega, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conventional Quantum Statistics with a Probability Distribution Describing Quantum System States</atitle><jtitle>Physics of particles and nuclei</jtitle><stitle>Phys. Part. Nuclei</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>51</volume><issue>4</issue><spage>772</spage><epage>780</epage><pages>772-780</pages><issn>1063-7796</issn><eissn>1531-8559</eissn><abstract>The review of a new probability representation of quantum states is presented, where the states are described by conventional probability distribution functions. The invertible map of the probability distribution onto density operators in the Hilbert space is found using the introduced operators called a quantizer–dequantizer, which specify the invertible map of operators of quantum observables onto functions and a product of the operators onto an associative product (star product) of the functions. Examples of a quantum oscillator and a spin-1/2 particle are considered. The kinetic equations for probabilities, specifying the evolution of the states of a quantum system, which are equivalent to Schrödinger and von Neumann equations, are derived explicitly.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063779620040486</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7796
ispartof Physics of particles and nuclei, 2020-07, Vol.51 (4), p.772-780
issn 1063-7796
1531-8559
language eng
recordid cdi_crossref_primary_10_1134_S1063779620040486
source SpringerLink Journals
subjects Particle and Nuclear Physics
Physics
Physics and Astronomy
title Conventional Quantum Statistics with a Probability Distribution Describing Quantum System States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conventional%20Quantum%20Statistics%20with%20a%20Probability%20Distribution%20Describing%20Quantum%20System%20States&rft.jtitle=Physics%20of%20particles%20and%20nuclei&rft.au=Man%E2%80%99ko,%20V.%20I.&rft.date=2020-07-01&rft.volume=51&rft.issue=4&rft.spage=772&rft.epage=780&rft.pages=772-780&rft.issn=1063-7796&rft.eissn=1531-8559&rft_id=info:doi/10.1134/S1063779620040486&rft_dat=%3Ccrossref_sprin%3E10_1134_S1063779620040486%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true