The Use of Neural Networks to Solve the Sign Problem in Physical Models
The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-den...
Gespeichert in:
Veröffentlicht in: | Physics of particles and nuclei 2020-05, Vol.51 (3), p.363-379 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 3 |
container_start_page | 363 |
container_title | Physics of particles and nuclei |
container_volume | 51 |
creator | Ulybyshev, M. V. Dorozhinskii, V. I. Pavlovskii, O. V. |
description | The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-density quark–gluon plasma (a new state of matter to be studied at the FAIR and NICA accelerators, which are under construction). In the proposed approach, trained neural networks roughly reproduce Lefschetz thimbles: manifolds in complex space, where the imaginary part of the action is constant. It is demonstrated that a trained network speeds up (compared to the common gradient flow algorithm) substantially the construction of the integration manifold in complex space. It is also shown that fluctuations of the imaginary part of the action on the approximate manifold defined by the neural network are still substantially smaller than in the common reweighting method. |
doi_str_mv | 10.1134/S1063779620030314 |
format | Article |
fullrecord | <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1063779620030314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000534810000030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-32b7133d934ccdc45d7fe7518f686682d752a6ac323f15087d8f2f014b0ac99c3</originalsourceid><addsrcrecordid>eNqNkN1LwzAUxYMoOKd_gG95l-q9TdOmj1L8gvkB255LmyZbZtdIkjn235sx8UUQ78u5cM7vcjmEXCJcI7LsZoqQs6Io8xSAAcPsiIyQM0wE5-Vx3KOd7P1Tcub9CgARuRiRh9lS0blX1Gr6ojau6aOErXXvngZLp7b_VDTEzNQsBvrmbNurNTVxXe68kTH-bDvV-3Nyopveq4tvHZP5_d2sekwmrw9P1e0kkYxnIWFpWyBjXckyKTuZ8a7QquAodC7yXKRdwdMmbyRLmUYOouiETjVg1kIjy1KyMcHDXems907p-sOZdeN2NUK9b6L-1URkrg7MVrVWe2nUINUPBwCcZQJhPxEYE_H_dGVCE4wdKrsZQkTTA-pjfFgoV6_sxg2xjz---wLwL37o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Use of Neural Networks to Solve the Sign Problem in Physical Models</title><source>Springer Online Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Ulybyshev, M. V. ; Dorozhinskii, V. I. ; Pavlovskii, O. V.</creator><creatorcontrib>Ulybyshev, M. V. ; Dorozhinskii, V. I. ; Pavlovskii, O. V.</creatorcontrib><description>The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-density quark–gluon plasma (a new state of matter to be studied at the FAIR and NICA accelerators, which are under construction). In the proposed approach, trained neural networks roughly reproduce Lefschetz thimbles: manifolds in complex space, where the imaginary part of the action is constant. It is demonstrated that a trained network speeds up (compared to the common gradient flow algorithm) substantially the construction of the integration manifold in complex space. It is also shown that fluctuations of the imaginary part of the action on the approximate manifold defined by the neural network are still substantially smaller than in the common reweighting method.</description><identifier>ISSN: 1063-7796</identifier><identifier>EISSN: 1531-8559</identifier><identifier>DOI: 10.1134/S1063779620030314</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Particle and Nuclear Physics ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Particles & Fields ; Science & Technology</subject><ispartof>Physics of particles and nuclei, 2020-05, Vol.51 (3), p.363-379</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000534810000030</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c354t-32b7133d934ccdc45d7fe7518f686682d752a6ac323f15087d8f2f014b0ac99c3</citedby><cites>FETCH-LOGICAL-c354t-32b7133d934ccdc45d7fe7518f686682d752a6ac323f15087d8f2f014b0ac99c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063779620030314$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063779620030314$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,28255,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Ulybyshev, M. V.</creatorcontrib><creatorcontrib>Dorozhinskii, V. I.</creatorcontrib><creatorcontrib>Pavlovskii, O. V.</creatorcontrib><title>The Use of Neural Networks to Solve the Sign Problem in Physical Models</title><title>Physics of particles and nuclei</title><addtitle>Phys. Part. Nuclei</addtitle><addtitle>PHYS PART NUCLEI</addtitle><description>The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-density quark–gluon plasma (a new state of matter to be studied at the FAIR and NICA accelerators, which are under construction). In the proposed approach, trained neural networks roughly reproduce Lefschetz thimbles: manifolds in complex space, where the imaginary part of the action is constant. It is demonstrated that a trained network speeds up (compared to the common gradient flow algorithm) substantially the construction of the integration manifold in complex space. It is also shown that fluctuations of the imaginary part of the action on the approximate manifold defined by the neural network are still substantially smaller than in the common reweighting method.</description><subject>Particle and Nuclear Physics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Particles & Fields</subject><subject>Science & Technology</subject><issn>1063-7796</issn><issn>1531-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkN1LwzAUxYMoOKd_gG95l-q9TdOmj1L8gvkB255LmyZbZtdIkjn235sx8UUQ78u5cM7vcjmEXCJcI7LsZoqQs6Io8xSAAcPsiIyQM0wE5-Vx3KOd7P1Tcub9CgARuRiRh9lS0blX1Gr6ojau6aOErXXvngZLp7b_VDTEzNQsBvrmbNurNTVxXe68kTH-bDvV-3Nyopveq4tvHZP5_d2sekwmrw9P1e0kkYxnIWFpWyBjXckyKTuZ8a7QquAodC7yXKRdwdMmbyRLmUYOouiETjVg1kIjy1KyMcHDXems907p-sOZdeN2NUK9b6L-1URkrg7MVrVWe2nUINUPBwCcZQJhPxEYE_H_dGVCE4wdKrsZQkTTA-pjfFgoV6_sxg2xjz---wLwL37o</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ulybyshev, M. V.</creator><creator>Dorozhinskii, V. I.</creator><creator>Pavlovskii, O. V.</creator><general>Pleiades Publishing</general><general>Pleiades Publishing Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>The Use of Neural Networks to Solve the Sign Problem in Physical Models</title><author>Ulybyshev, M. V. ; Dorozhinskii, V. I. ; Pavlovskii, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-32b7133d934ccdc45d7fe7518f686682d752a6ac323f15087d8f2f014b0ac99c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Particle and Nuclear Physics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Particles & Fields</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulybyshev, M. V.</creatorcontrib><creatorcontrib>Dorozhinskii, V. I.</creatorcontrib><creatorcontrib>Pavlovskii, O. V.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Physics of particles and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulybyshev, M. V.</au><au>Dorozhinskii, V. I.</au><au>Pavlovskii, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Neural Networks to Solve the Sign Problem in Physical Models</atitle><jtitle>Physics of particles and nuclei</jtitle><stitle>Phys. Part. Nuclei</stitle><stitle>PHYS PART NUCLEI</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>51</volume><issue>3</issue><spage>363</spage><epage>379</epage><pages>363-379</pages><issn>1063-7796</issn><eissn>1531-8559</eissn><abstract>The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-density quark–gluon plasma (a new state of matter to be studied at the FAIR and NICA accelerators, which are under construction). In the proposed approach, trained neural networks roughly reproduce Lefschetz thimbles: manifolds in complex space, where the imaginary part of the action is constant. It is demonstrated that a trained network speeds up (compared to the common gradient flow algorithm) substantially the construction of the integration manifold in complex space. It is also shown that fluctuations of the imaginary part of the action on the approximate manifold defined by the neural network are still substantially smaller than in the common reweighting method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063779620030314</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7796 |
ispartof | Physics of particles and nuclei, 2020-05, Vol.51 (3), p.363-379 |
issn | 1063-7796 1531-8559 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1063779620030314 |
source | Springer Online Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Particle and Nuclear Physics Physical Sciences Physics Physics and Astronomy Physics, Particles & Fields Science & Technology |
title | The Use of Neural Networks to Solve the Sign Problem in Physical Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T22%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Neural%20Networks%20to%20Solve%20the%20Sign%20Problem%20in%20Physical%20Models&rft.jtitle=Physics%20of%20particles%20and%20nuclei&rft.au=Ulybyshev,%20M.%20V.&rft.date=2020-05-01&rft.volume=51&rft.issue=3&rft.spage=363&rft.epage=379&rft.pages=363-379&rft.issn=1063-7796&rft.eissn=1531-8559&rft_id=info:doi/10.1134/S1063779620030314&rft_dat=%3Cwebofscience_cross%3E000534810000030%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |