The Use of Neural Networks to Solve the Sign Problem in Physical Models

The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of particles and nuclei 2020-05, Vol.51 (3), p.363-379
Hauptverfasser: Ulybyshev, M. V., Dorozhinskii, V. I., Pavlovskii, O. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 3
container_start_page 363
container_title Physics of particles and nuclei
container_volume 51
creator Ulybyshev, M. V.
Dorozhinskii, V. I.
Pavlovskii, O. V.
description The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-density quark–gluon plasma (a new state of matter to be studied at the FAIR and NICA accelerators, which are under construction). In the proposed approach, trained neural networks roughly reproduce Lefschetz thimbles: manifolds in complex space, where the imaginary part of the action is constant. It is demonstrated that a trained network speeds up (compared to the common gradient flow algorithm) substantially the construction of the integration manifold in complex space. It is also shown that fluctuations of the imaginary part of the action on the approximate manifold defined by the neural network are still substantially smaller than in the common reweighting method.
doi_str_mv 10.1134/S1063779620030314
format Article
fullrecord <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1063779620030314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000534810000030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-32b7133d934ccdc45d7fe7518f686682d752a6ac323f15087d8f2f014b0ac99c3</originalsourceid><addsrcrecordid>eNqNkN1LwzAUxYMoOKd_gG95l-q9TdOmj1L8gvkB255LmyZbZtdIkjn235sx8UUQ78u5cM7vcjmEXCJcI7LsZoqQs6Io8xSAAcPsiIyQM0wE5-Vx3KOd7P1Tcub9CgARuRiRh9lS0blX1Gr6ojau6aOErXXvngZLp7b_VDTEzNQsBvrmbNurNTVxXe68kTH-bDvV-3Nyopveq4tvHZP5_d2sekwmrw9P1e0kkYxnIWFpWyBjXckyKTuZ8a7QquAodC7yXKRdwdMmbyRLmUYOouiETjVg1kIjy1KyMcHDXems907p-sOZdeN2NUK9b6L-1URkrg7MVrVWe2nUINUPBwCcZQJhPxEYE_H_dGVCE4wdKrsZQkTTA-pjfFgoV6_sxg2xjz---wLwL37o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Use of Neural Networks to Solve the Sign Problem in Physical Models</title><source>Springer Online Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Ulybyshev, M. V. ; Dorozhinskii, V. I. ; Pavlovskii, O. V.</creator><creatorcontrib>Ulybyshev, M. V. ; Dorozhinskii, V. I. ; Pavlovskii, O. V.</creatorcontrib><description>The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-density quark–gluon plasma (a new state of matter to be studied at the FAIR and NICA accelerators, which are under construction). In the proposed approach, trained neural networks roughly reproduce Lefschetz thimbles: manifolds in complex space, where the imaginary part of the action is constant. It is demonstrated that a trained network speeds up (compared to the common gradient flow algorithm) substantially the construction of the integration manifold in complex space. It is also shown that fluctuations of the imaginary part of the action on the approximate manifold defined by the neural network are still substantially smaller than in the common reweighting method.</description><identifier>ISSN: 1063-7796</identifier><identifier>EISSN: 1531-8559</identifier><identifier>DOI: 10.1134/S1063779620030314</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Particle and Nuclear Physics ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Particles &amp; Fields ; Science &amp; Technology</subject><ispartof>Physics of particles and nuclei, 2020-05, Vol.51 (3), p.363-379</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000534810000030</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c354t-32b7133d934ccdc45d7fe7518f686682d752a6ac323f15087d8f2f014b0ac99c3</citedby><cites>FETCH-LOGICAL-c354t-32b7133d934ccdc45d7fe7518f686682d752a6ac323f15087d8f2f014b0ac99c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063779620030314$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063779620030314$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,28255,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Ulybyshev, M. V.</creatorcontrib><creatorcontrib>Dorozhinskii, V. I.</creatorcontrib><creatorcontrib>Pavlovskii, O. V.</creatorcontrib><title>The Use of Neural Networks to Solve the Sign Problem in Physical Models</title><title>Physics of particles and nuclei</title><addtitle>Phys. Part. Nuclei</addtitle><addtitle>PHYS PART NUCLEI</addtitle><description>The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-density quark–gluon plasma (a new state of matter to be studied at the FAIR and NICA accelerators, which are under construction). In the proposed approach, trained neural networks roughly reproduce Lefschetz thimbles: manifolds in complex space, where the imaginary part of the action is constant. It is demonstrated that a trained network speeds up (compared to the common gradient flow algorithm) substantially the construction of the integration manifold in complex space. It is also shown that fluctuations of the imaginary part of the action on the approximate manifold defined by the neural network are still substantially smaller than in the common reweighting method.</description><subject>Particle and Nuclear Physics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Particles &amp; Fields</subject><subject>Science &amp; Technology</subject><issn>1063-7796</issn><issn>1531-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkN1LwzAUxYMoOKd_gG95l-q9TdOmj1L8gvkB255LmyZbZtdIkjn235sx8UUQ78u5cM7vcjmEXCJcI7LsZoqQs6Io8xSAAcPsiIyQM0wE5-Vx3KOd7P1Tcub9CgARuRiRh9lS0blX1Gr6ojau6aOErXXvngZLp7b_VDTEzNQsBvrmbNurNTVxXe68kTH-bDvV-3Nyopveq4tvHZP5_d2sekwmrw9P1e0kkYxnIWFpWyBjXckyKTuZ8a7QquAodC7yXKRdwdMmbyRLmUYOouiETjVg1kIjy1KyMcHDXems907p-sOZdeN2NUK9b6L-1URkrg7MVrVWe2nUINUPBwCcZQJhPxEYE_H_dGVCE4wdKrsZQkTTA-pjfFgoV6_sxg2xjz---wLwL37o</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ulybyshev, M. V.</creator><creator>Dorozhinskii, V. I.</creator><creator>Pavlovskii, O. V.</creator><general>Pleiades Publishing</general><general>Pleiades Publishing Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>The Use of Neural Networks to Solve the Sign Problem in Physical Models</title><author>Ulybyshev, M. V. ; Dorozhinskii, V. I. ; Pavlovskii, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-32b7133d934ccdc45d7fe7518f686682d752a6ac323f15087d8f2f014b0ac99c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Particle and Nuclear Physics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Particles &amp; Fields</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulybyshev, M. V.</creatorcontrib><creatorcontrib>Dorozhinskii, V. I.</creatorcontrib><creatorcontrib>Pavlovskii, O. V.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Physics of particles and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulybyshev, M. V.</au><au>Dorozhinskii, V. I.</au><au>Pavlovskii, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Neural Networks to Solve the Sign Problem in Physical Models</atitle><jtitle>Physics of particles and nuclei</jtitle><stitle>Phys. Part. Nuclei</stitle><stitle>PHYS PART NUCLEI</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>51</volume><issue>3</issue><spage>363</spage><epage>379</epage><pages>363-379</pages><issn>1063-7796</issn><eissn>1531-8559</eissn><abstract>The possibility of taming the sign problem, which arises in the study of fermionic systems with finite chemical potential, with the use of algorithms of neural networks is examined. A solution to the sign problem is crucial for current research in condensed matter physics and the physics of high-density quark–gluon plasma (a new state of matter to be studied at the FAIR and NICA accelerators, which are under construction). In the proposed approach, trained neural networks roughly reproduce Lefschetz thimbles: manifolds in complex space, where the imaginary part of the action is constant. It is demonstrated that a trained network speeds up (compared to the common gradient flow algorithm) substantially the construction of the integration manifold in complex space. It is also shown that fluctuations of the imaginary part of the action on the approximate manifold defined by the neural network are still substantially smaller than in the common reweighting method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063779620030314</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7796
ispartof Physics of particles and nuclei, 2020-05, Vol.51 (3), p.363-379
issn 1063-7796
1531-8559
language eng
recordid cdi_crossref_primary_10_1134_S1063779620030314
source Springer Online Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Particle and Nuclear Physics
Physical Sciences
Physics
Physics and Astronomy
Physics, Particles & Fields
Science & Technology
title The Use of Neural Networks to Solve the Sign Problem in Physical Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T22%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Neural%20Networks%20to%20Solve%20the%20Sign%20Problem%20in%20Physical%20Models&rft.jtitle=Physics%20of%20particles%20and%20nuclei&rft.au=Ulybyshev,%20M.%20V.&rft.date=2020-05-01&rft.volume=51&rft.issue=3&rft.spage=363&rft.epage=379&rft.pages=363-379&rft.issn=1063-7796&rft.eissn=1531-8559&rft_id=info:doi/10.1134/S1063779620030314&rft_dat=%3Cwebofscience_cross%3E000534810000030%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true