Application of Neural Networks to Searching for Optical Transients in Astronomical Images Using the Subtraction Method

With the beginning of a new gravitational-wave era in astronomy and astrophysics, the problem of identification of gamma-ray bursts optical counterparts is becoming more relevant than ever before. The application of existing methods for identifying transients, in particular image subtraction, is com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis 2024-09, Vol.34 (3), p.870-876
Hauptverfasser: Shekotihin, E. A., Pankov, N. S., Pozanenko, A. S., Belkin, S. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 876
container_issue 3
container_start_page 870
container_title Pattern recognition and image analysis
container_volume 34
creator Shekotihin, E. A.
Pankov, N. S.
Pozanenko, A. S.
Belkin, S. O.
description With the beginning of a new gravitational-wave era in astronomy and astrophysics, the problem of identification of gamma-ray bursts optical counterparts is becoming more relevant than ever before. The application of existing methods for identifying transients, in particular image subtraction, is complicated by several factors; the main ones are the variability of observation conditions and the variability of other sources not related to the desired counterpart, as well as the possible absence of reference images from the observatory at which the search is being conducted. This paper examines the results of using deep image prior neural network to translation images from the Pan-STARRS survey to images from the AS-32 telescope of the Abastumani Astrophysical Observatory for the purpose of their subsequent subtraction for the identification and photometry of optical transients. Using examples of fragments of images of the M82 galaxy, the potential of the deep prior approach is demonstrated for both detection of transient events in M82 and for their flux estimation.
doi_str_mv 10.1134/S1054661824700767
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1054661824700767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1054661824700767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-82329fb6feb96ed1d92d6d931376b87660d4ade830cd118ba6bedb6acc2dbce73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AgGvk9jJsar4qVTooe058l_alNSObBfE2-O23JA4zUoz3-5qELoH8gCQF49LIGXBGFS04IRwxi_QCMqyzBgFepnmZGdH_xrdhLAjhFRQ0xH6nAxD3ykRO2exa_G7OXjRJ4lfzn8EHB1eGuHVtrMb3DqPF0NM8R6vvLChMzYG3Fk8CdE76_Yna7YXGxPwOhyZuDV4eZDRC3W68Wbi1ulbdNWKPpi7Xx2j9fPTavqazRcvs-lkningJGYVzWndStYaWTOjQddUM13nkHMmK84Y0YXQpsqJ0gCVFEwaLZlQimqpDM_HCM57lXcheNM2g-_2wn83QJpjcc2f4hJDz0xIWbsxvtm5g7fpzX-gH_0Rcqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Neural Networks to Searching for Optical Transients in Astronomical Images Using the Subtraction Method</title><source>SpringerLink Journals</source><creator>Shekotihin, E. A. ; Pankov, N. S. ; Pozanenko, A. S. ; Belkin, S. O.</creator><creatorcontrib>Shekotihin, E. A. ; Pankov, N. S. ; Pozanenko, A. S. ; Belkin, S. O.</creatorcontrib><description>With the beginning of a new gravitational-wave era in astronomy and astrophysics, the problem of identification of gamma-ray bursts optical counterparts is becoming more relevant than ever before. The application of existing methods for identifying transients, in particular image subtraction, is complicated by several factors; the main ones are the variability of observation conditions and the variability of other sources not related to the desired counterpart, as well as the possible absence of reference images from the observatory at which the search is being conducted. This paper examines the results of using deep image prior neural network to translation images from the Pan-STARRS survey to images from the AS-32 telescope of the Abastumani Astrophysical Observatory for the purpose of their subsequent subtraction for the identification and photometry of optical transients. Using examples of fragments of images of the M82 galaxy, the potential of the deep prior approach is demonstrated for both detection of transient events in M82 and for their flux estimation.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661824700767</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computer Science ; Image Processing and Computer Vision ; Pattern Recognition ; Pria Journal Special Issue Xxv International Conference Damdid/Rcdl-2023/Selected Papers of Participants</subject><ispartof>Pattern recognition and image analysis, 2024-09, Vol.34 (3), p.870-876</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2024, Vol. 34, No. 3, pp. 870–876. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-82329fb6feb96ed1d92d6d931376b87660d4ade830cd118ba6bedb6acc2dbce73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661824700767$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661824700767$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shekotihin, E. A.</creatorcontrib><creatorcontrib>Pankov, N. S.</creatorcontrib><creatorcontrib>Pozanenko, A. S.</creatorcontrib><creatorcontrib>Belkin, S. O.</creatorcontrib><title>Application of Neural Networks to Searching for Optical Transients in Astronomical Images Using the Subtraction Method</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>With the beginning of a new gravitational-wave era in astronomy and astrophysics, the problem of identification of gamma-ray bursts optical counterparts is becoming more relevant than ever before. The application of existing methods for identifying transients, in particular image subtraction, is complicated by several factors; the main ones are the variability of observation conditions and the variability of other sources not related to the desired counterpart, as well as the possible absence of reference images from the observatory at which the search is being conducted. This paper examines the results of using deep image prior neural network to translation images from the Pan-STARRS survey to images from the AS-32 telescope of the Abastumani Astrophysical Observatory for the purpose of their subsequent subtraction for the identification and photometry of optical transients. Using examples of fragments of images of the M82 galaxy, the potential of the deep prior approach is demonstrated for both detection of transient events in M82 and for their flux estimation.</description><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Pattern Recognition</subject><subject>Pria Journal Special Issue Xxv International Conference Damdid/Rcdl-2023/Selected Papers of Participants</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AgGvk9jJsar4qVTooe058l_alNSObBfE2-O23JA4zUoz3-5qELoH8gCQF49LIGXBGFS04IRwxi_QCMqyzBgFepnmZGdH_xrdhLAjhFRQ0xH6nAxD3ykRO2exa_G7OXjRJ4lfzn8EHB1eGuHVtrMb3DqPF0NM8R6vvLChMzYG3Fk8CdE76_Yna7YXGxPwOhyZuDV4eZDRC3W68Wbi1ulbdNWKPpi7Xx2j9fPTavqazRcvs-lkningJGYVzWndStYaWTOjQddUM13nkHMmK84Y0YXQpsqJ0gCVFEwaLZlQimqpDM_HCM57lXcheNM2g-_2wn83QJpjcc2f4hJDz0xIWbsxvtm5g7fpzX-gH_0Rcqo</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Shekotihin, E. A.</creator><creator>Pankov, N. S.</creator><creator>Pozanenko, A. S.</creator><creator>Belkin, S. O.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Application of Neural Networks to Searching for Optical Transients in Astronomical Images Using the Subtraction Method</title><author>Shekotihin, E. A. ; Pankov, N. S. ; Pozanenko, A. S. ; Belkin, S. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-82329fb6feb96ed1d92d6d931376b87660d4ade830cd118ba6bedb6acc2dbce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Pattern Recognition</topic><topic>Pria Journal Special Issue Xxv International Conference Damdid/Rcdl-2023/Selected Papers of Participants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shekotihin, E. A.</creatorcontrib><creatorcontrib>Pankov, N. S.</creatorcontrib><creatorcontrib>Pozanenko, A. S.</creatorcontrib><creatorcontrib>Belkin, S. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shekotihin, E. A.</au><au>Pankov, N. S.</au><au>Pozanenko, A. S.</au><au>Belkin, S. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Neural Networks to Searching for Optical Transients in Astronomical Images Using the Subtraction Method</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>870</spage><epage>876</epage><pages>870-876</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>With the beginning of a new gravitational-wave era in astronomy and astrophysics, the problem of identification of gamma-ray bursts optical counterparts is becoming more relevant than ever before. The application of existing methods for identifying transients, in particular image subtraction, is complicated by several factors; the main ones are the variability of observation conditions and the variability of other sources not related to the desired counterpart, as well as the possible absence of reference images from the observatory at which the search is being conducted. This paper examines the results of using deep image prior neural network to translation images from the Pan-STARRS survey to images from the AS-32 telescope of the Abastumani Astrophysical Observatory for the purpose of their subsequent subtraction for the identification and photometry of optical transients. Using examples of fragments of images of the M82 galaxy, the potential of the deep prior approach is demonstrated for both detection of transient events in M82 and for their flux estimation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661824700767</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2024-09, Vol.34 (3), p.870-876
issn 1054-6618
1555-6212
language eng
recordid cdi_crossref_primary_10_1134_S1054661824700767
source SpringerLink Journals
subjects Computer Science
Image Processing and Computer Vision
Pattern Recognition
Pria Journal Special Issue Xxv International Conference Damdid/Rcdl-2023/Selected Papers of Participants
title Application of Neural Networks to Searching for Optical Transients in Astronomical Images Using the Subtraction Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Neural%20Networks%20to%20Searching%20for%20Optical%20Transients%20in%20Astronomical%20Images%20Using%20the%20Subtraction%20Method&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Shekotihin,%20E.%20A.&rft.date=2024-09-01&rft.volume=34&rft.issue=3&rft.spage=870&rft.epage=876&rft.pages=870-876&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661824700767&rft_dat=%3Ccrossref_sprin%3E10_1134_S1054661824700767%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true