Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods

The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady earth sciences 2020-07, Vol.493 (1), p.569-571
Hauptverfasser: Voronin, E. A., Nosov, V. N., Savin, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 1
container_start_page 569
container_title Doklady earth sciences
container_volume 493
creator Voronin, E. A.
Nosov, V. N.
Savin, A. S.
description The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the basis of the data from a laboratory experiment on water surface perturbations, the parameters of the model moving in the water column are restored.
doi_str_mv 10.1134/S1028334X20070211
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1028334X20070211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633892647</galeid><sourcerecordid>A633892647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-cde94acaec5fba2a0b44e20323d070fc2aaa1e8f3604c606e299dd639489dc13</originalsourceid><addsrcrecordid>eNp1kT1PwzAQhiMEElD4AWyRmFNsn5MmI5RPqYhK7cAWXZxz66pxwE6GLvx2HApiQEx3uvd97kMXRRecjTkHebXgTOQA8lUwNmGC84PohKfAkxxSeRjyICeDfhyder9hTEqZFifRxy115BpjsTOtjVsdd2uK5-iwGQQ_VDBe9FVDbkV1vGh7pyiudvGcXNe76ovzP-DMvPcmuHqnMdhu0Acm9H1GtTY26ITOGruKn6lbt7U_i440bj2df8dRtLy_W04fk9nLw9P0epYgAOsSVVMhUSGpVFcokFVSkmAgoA7XaiUQkVOuIWNSZSwjURR1nUEh86JWHEbR5b7tm2vfe_JduQl32DCxFBJywWGSQnCN964Vbqk0VredC0MV1tQY1VrSJtSvM4C8EJmcBIDvAeVa7x3p8s2ZBt2u5Kwc3lL-eUtgxJ7xwWtX5H5X-R_6BJm5j-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438213753</pqid></control><display><type>article</type><title>Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Voronin, E. A. ; Nosov, V. N. ; Savin, A. S.</creator><creatorcontrib>Voronin, E. A. ; Nosov, V. N. ; Savin, A. S.</creatorcontrib><description>The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the basis of the data from a laboratory experiment on water surface perturbations, the parameters of the model moving in the water column are restored.</description><identifier>ISSN: 1028-334X</identifier><identifier>EISSN: 1531-8354</identifier><identifier>DOI: 10.1134/S1028334X20070211</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Earth and Environmental Science ; Earth Sciences ; Inverse problems ; Learning algorithms ; Liquid surfaces ; Machine learning ; Methods ; Neural networks ; Oceanology ; Parameters ; Perturbations ; Surface waves ; Water circulation ; Water column</subject><ispartof>Doklady earth sciences, 2020-07, Vol.493 (1), p.569-571</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a330t-cde94acaec5fba2a0b44e20323d070fc2aaa1e8f3604c606e299dd639489dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1028334X20070211$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1028334X20070211$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Voronin, E. A.</creatorcontrib><creatorcontrib>Nosov, V. N.</creatorcontrib><creatorcontrib>Savin, A. S.</creatorcontrib><title>Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods</title><title>Doklady earth sciences</title><addtitle>Dokl. Earth Sc</addtitle><description>The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the basis of the data from a laboratory experiment on water surface perturbations, the parameters of the model moving in the water column are restored.</description><subject>Analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Inverse problems</subject><subject>Learning algorithms</subject><subject>Liquid surfaces</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Oceanology</subject><subject>Parameters</subject><subject>Perturbations</subject><subject>Surface waves</subject><subject>Water circulation</subject><subject>Water column</subject><issn>1028-334X</issn><issn>1531-8354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kT1PwzAQhiMEElD4AWyRmFNsn5MmI5RPqYhK7cAWXZxz66pxwE6GLvx2HApiQEx3uvd97kMXRRecjTkHebXgTOQA8lUwNmGC84PohKfAkxxSeRjyICeDfhyder9hTEqZFifRxy115BpjsTOtjVsdd2uK5-iwGQQ_VDBe9FVDbkV1vGh7pyiudvGcXNe76ovzP-DMvPcmuHqnMdhu0Acm9H1GtTY26ITOGruKn6lbt7U_i440bj2df8dRtLy_W04fk9nLw9P0epYgAOsSVVMhUSGpVFcokFVSkmAgoA7XaiUQkVOuIWNSZSwjURR1nUEh86JWHEbR5b7tm2vfe_JduQl32DCxFBJywWGSQnCN964Vbqk0VredC0MV1tQY1VrSJtSvM4C8EJmcBIDvAeVa7x3p8s2ZBt2u5Kwc3lL-eUtgxJ7xwWtX5H5X-R_6BJm5j-E</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Voronin, E. A.</creator><creator>Nosov, V. N.</creator><creator>Savin, A. S.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20200701</creationdate><title>Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods</title><author>Voronin, E. A. ; Nosov, V. N. ; Savin, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-cde94acaec5fba2a0b44e20323d070fc2aaa1e8f3604c606e299dd639489dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Inverse problems</topic><topic>Learning algorithms</topic><topic>Liquid surfaces</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Oceanology</topic><topic>Parameters</topic><topic>Perturbations</topic><topic>Surface waves</topic><topic>Water circulation</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voronin, E. A.</creatorcontrib><creatorcontrib>Nosov, V. N.</creatorcontrib><creatorcontrib>Savin, A. S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Doklady earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voronin, E. A.</au><au>Nosov, V. N.</au><au>Savin, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods</atitle><jtitle>Doklady earth sciences</jtitle><stitle>Dokl. Earth Sc</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>493</volume><issue>1</issue><spage>569</spage><epage>571</epage><pages>569-571</pages><issn>1028-334X</issn><eissn>1531-8354</eissn><abstract>The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the basis of the data from a laboratory experiment on water surface perturbations, the parameters of the model moving in the water column are restored.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1028334X20070211</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1028-334X
ispartof Doklady earth sciences, 2020-07, Vol.493 (1), p.569-571
issn 1028-334X
1531-8354
language eng
recordid cdi_crossref_primary_10_1134_S1028334X20070211
source SpringerLink Journals - AutoHoldings
subjects Analysis
Earth and Environmental Science
Earth Sciences
Inverse problems
Learning algorithms
Liquid surfaces
Machine learning
Methods
Neural networks
Oceanology
Parameters
Perturbations
Surface waves
Water circulation
Water column
title Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20Parameters%20of%20a%20Submerged%20Source%20by%20Perturbations%20of%20the%20Liquid%20Surface%20Based%20on%20Machine%20Learning%20Methods&rft.jtitle=Doklady%20earth%20sciences&rft.au=Voronin,%20E.%20A.&rft.date=2020-07-01&rft.volume=493&rft.issue=1&rft.spage=569&rft.epage=571&rft.pages=569-571&rft.issn=1028-334X&rft.eissn=1531-8354&rft_id=info:doi/10.1134/S1028334X20070211&rft_dat=%3Cgale_proqu%3EA633892647%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438213753&rft_id=info:pmid/&rft_galeid=A633892647&rfr_iscdi=true