Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods
The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the ba...
Gespeichert in:
Veröffentlicht in: | Doklady earth sciences 2020-07, Vol.493 (1), p.569-571 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 1 |
container_start_page | 569 |
container_title | Doklady earth sciences |
container_volume | 493 |
creator | Voronin, E. A. Nosov, V. N. Savin, A. S. |
description | The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the basis of the data from a laboratory experiment on water surface perturbations, the parameters of the model moving in the water column are restored. |
doi_str_mv | 10.1134/S1028334X20070211 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1028334X20070211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633892647</galeid><sourcerecordid>A633892647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-cde94acaec5fba2a0b44e20323d070fc2aaa1e8f3604c606e299dd639489dc13</originalsourceid><addsrcrecordid>eNp1kT1PwzAQhiMEElD4AWyRmFNsn5MmI5RPqYhK7cAWXZxz66pxwE6GLvx2HApiQEx3uvd97kMXRRecjTkHebXgTOQA8lUwNmGC84PohKfAkxxSeRjyICeDfhyder9hTEqZFifRxy115BpjsTOtjVsdd2uK5-iwGQQ_VDBe9FVDbkV1vGh7pyiudvGcXNe76ovzP-DMvPcmuHqnMdhu0Acm9H1GtTY26ITOGruKn6lbt7U_i440bj2df8dRtLy_W04fk9nLw9P0epYgAOsSVVMhUSGpVFcokFVSkmAgoA7XaiUQkVOuIWNSZSwjURR1nUEh86JWHEbR5b7tm2vfe_JduQl32DCxFBJywWGSQnCN964Vbqk0VredC0MV1tQY1VrSJtSvM4C8EJmcBIDvAeVa7x3p8s2ZBt2u5Kwc3lL-eUtgxJ7xwWtX5H5X-R_6BJm5j-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438213753</pqid></control><display><type>article</type><title>Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Voronin, E. A. ; Nosov, V. N. ; Savin, A. S.</creator><creatorcontrib>Voronin, E. A. ; Nosov, V. N. ; Savin, A. S.</creatorcontrib><description>The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the basis of the data from a laboratory experiment on water surface perturbations, the parameters of the model moving in the water column are restored.</description><identifier>ISSN: 1028-334X</identifier><identifier>EISSN: 1531-8354</identifier><identifier>DOI: 10.1134/S1028334X20070211</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Earth and Environmental Science ; Earth Sciences ; Inverse problems ; Learning algorithms ; Liquid surfaces ; Machine learning ; Methods ; Neural networks ; Oceanology ; Parameters ; Perturbations ; Surface waves ; Water circulation ; Water column</subject><ispartof>Doklady earth sciences, 2020-07, Vol.493 (1), p.569-571</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a330t-cde94acaec5fba2a0b44e20323d070fc2aaa1e8f3604c606e299dd639489dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1028334X20070211$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1028334X20070211$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Voronin, E. A.</creatorcontrib><creatorcontrib>Nosov, V. N.</creatorcontrib><creatorcontrib>Savin, A. S.</creatorcontrib><title>Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods</title><title>Doklady earth sciences</title><addtitle>Dokl. Earth Sc</addtitle><description>The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the basis of the data from a laboratory experiment on water surface perturbations, the parameters of the model moving in the water column are restored.</description><subject>Analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Inverse problems</subject><subject>Learning algorithms</subject><subject>Liquid surfaces</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Oceanology</subject><subject>Parameters</subject><subject>Perturbations</subject><subject>Surface waves</subject><subject>Water circulation</subject><subject>Water column</subject><issn>1028-334X</issn><issn>1531-8354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kT1PwzAQhiMEElD4AWyRmFNsn5MmI5RPqYhK7cAWXZxz66pxwE6GLvx2HApiQEx3uvd97kMXRRecjTkHebXgTOQA8lUwNmGC84PohKfAkxxSeRjyICeDfhyder9hTEqZFifRxy115BpjsTOtjVsdd2uK5-iwGQQ_VDBe9FVDbkV1vGh7pyiudvGcXNe76ovzP-DMvPcmuHqnMdhu0Acm9H1GtTY26ITOGruKn6lbt7U_i440bj2df8dRtLy_W04fk9nLw9P0epYgAOsSVVMhUSGpVFcokFVSkmAgoA7XaiUQkVOuIWNSZSwjURR1nUEh86JWHEbR5b7tm2vfe_JduQl32DCxFBJywWGSQnCN964Vbqk0VredC0MV1tQY1VrSJtSvM4C8EJmcBIDvAeVa7x3p8s2ZBt2u5Kwc3lL-eUtgxJ7xwWtX5H5X-R_6BJm5j-E</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Voronin, E. A.</creator><creator>Nosov, V. N.</creator><creator>Savin, A. S.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20200701</creationdate><title>Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods</title><author>Voronin, E. A. ; Nosov, V. N. ; Savin, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-cde94acaec5fba2a0b44e20323d070fc2aaa1e8f3604c606e299dd639489dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Inverse problems</topic><topic>Learning algorithms</topic><topic>Liquid surfaces</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Oceanology</topic><topic>Parameters</topic><topic>Perturbations</topic><topic>Surface waves</topic><topic>Water circulation</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voronin, E. A.</creatorcontrib><creatorcontrib>Nosov, V. N.</creatorcontrib><creatorcontrib>Savin, A. S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Doklady earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voronin, E. A.</au><au>Nosov, V. N.</au><au>Savin, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods</atitle><jtitle>Doklady earth sciences</jtitle><stitle>Dokl. Earth Sc</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>493</volume><issue>1</issue><spage>569</spage><epage>571</epage><pages>569-571</pages><issn>1028-334X</issn><eissn>1531-8354</eissn><abstract>The inverse problem of generating surface waves in a liquid is to determine the parameters of the source of perturbations from the waves it creates on the liquid surface. A new approach to solving this problem based on machine learning methods and the theory of neural networks is proposed. On the basis of the data from a laboratory experiment on water surface perturbations, the parameters of the model moving in the water column are restored.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1028334X20070211</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1028-334X |
ispartof | Doklady earth sciences, 2020-07, Vol.493 (1), p.569-571 |
issn | 1028-334X 1531-8354 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1028334X20070211 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Earth and Environmental Science Earth Sciences Inverse problems Learning algorithms Liquid surfaces Machine learning Methods Neural networks Oceanology Parameters Perturbations Surface waves Water circulation Water column |
title | Determination of the Parameters of a Submerged Source by Perturbations of the Liquid Surface Based on Machine Learning Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20Parameters%20of%20a%20Submerged%20Source%20by%20Perturbations%20of%20the%20Liquid%20Surface%20Based%20on%20Machine%20Learning%20Methods&rft.jtitle=Doklady%20earth%20sciences&rft.au=Voronin,%20E.%20A.&rft.date=2020-07-01&rft.volume=493&rft.issue=1&rft.spage=569&rft.epage=571&rft.pages=569-571&rft.issn=1028-334X&rft.eissn=1531-8354&rft_id=info:doi/10.1134/S1028334X20070211&rft_dat=%3Cgale_proqu%3EA633892647%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438213753&rft_id=info:pmid/&rft_galeid=A633892647&rfr_iscdi=true |