Mathematical modeling of the process of interaction between radiation and disperse nanoparticles

On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density W ∼ 1000 J/m 3 can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a statio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric and oceanic optics 2009-06, Vol.22 (3), p.284-289
Hauptverfasser: Sadykov, N. R., Skorkin, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 3
container_start_page 284
container_title Atmospheric and oceanic optics
container_volume 22
creator Sadykov, N. R.
Skorkin, N. A.
description On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density W ∼ 1000 J/m 3 can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a stationary electric field. The required mass density of the nanoparticles and the magnitude of the pumping field have been estimated. A method is proposed for obtaining an active medium for amplification of microwave radiation in the 10-cm wavelength range by means of a stationary electric field. For this purpose, extended nanoparticles are to be dispersed.
doi_str_mv 10.1134/S102485600903004X
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S102485600903004X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S102485600903004X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-4159c19709bf8346878511d1c73c022c335d7e3270ecf99adb68ababa6fdd6e13</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKJgXf0B3vIHqi9JP5KjLH7BigcVvNU0eV2ztElJKuK_t3W9CfIOjzfzZhiGkHMGF4yJ4vKJAS9kWQEoEADF6wHJONSQg1DikGQLnS_8MTlJaQdQlapkGXl70NM7DnpyRvd0CBZ757c0dHSG6RiDwZSW0_kJozaTC562OH0iehq1dfoH0d5S69KIMSH12odRx9myx3RKjjrdJzz73SvycnP9vL7LN4-39-urTW64lFNesFIZpmpQbSdFUclaloxZZmphgHMjRGlrFLwGNJ1S2raV1O08VWdthUysCNv7mhhSitg1Y3SDjl8Ng2apqPlT0azhe02af_0WY7MLH9HPMf8RfQMJmmpt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mathematical modeling of the process of interaction between radiation and disperse nanoparticles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sadykov, N. R. ; Skorkin, N. A.</creator><creatorcontrib>Sadykov, N. R. ; Skorkin, N. A.</creatorcontrib><description>On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density W ∼ 1000 J/m 3 can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a stationary electric field. The required mass density of the nanoparticles and the magnitude of the pumping field have been estimated. A method is proposed for obtaining an active medium for amplification of microwave radiation in the 10-cm wavelength range by means of a stationary electric field. For this purpose, extended nanoparticles are to be dispersed.</description><identifier>ISSN: 1024-8560</identifier><identifier>EISSN: 2070-0393</identifier><identifier>DOI: 10.1134/S102485600903004X</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Aerosols ; Hydrosoles ; Lasers ; Optical Devices ; Optics ; Optics of Clusters ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Atmospheric and oceanic optics, 2009-06, Vol.22 (3), p.284-289</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-4159c19709bf8346878511d1c73c022c335d7e3270ecf99adb68ababa6fdd6e13</citedby><cites>FETCH-LOGICAL-c288t-4159c19709bf8346878511d1c73c022c335d7e3270ecf99adb68ababa6fdd6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S102485600903004X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S102485600903004X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sadykov, N. R.</creatorcontrib><creatorcontrib>Skorkin, N. A.</creatorcontrib><title>Mathematical modeling of the process of interaction between radiation and disperse nanoparticles</title><title>Atmospheric and oceanic optics</title><addtitle>Atmos Ocean Opt</addtitle><description>On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density W ∼ 1000 J/m 3 can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a stationary electric field. The required mass density of the nanoparticles and the magnitude of the pumping field have been estimated. A method is proposed for obtaining an active medium for amplification of microwave radiation in the 10-cm wavelength range by means of a stationary electric field. For this purpose, extended nanoparticles are to be dispersed.</description><subject>Aerosols</subject><subject>Hydrosoles</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Optics of Clusters</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>1024-8560</issn><issn>2070-0393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKJgXf0B3vIHqi9JP5KjLH7BigcVvNU0eV2ztElJKuK_t3W9CfIOjzfzZhiGkHMGF4yJ4vKJAS9kWQEoEADF6wHJONSQg1DikGQLnS_8MTlJaQdQlapkGXl70NM7DnpyRvd0CBZ757c0dHSG6RiDwZSW0_kJozaTC562OH0iehq1dfoH0d5S69KIMSH12odRx9myx3RKjjrdJzz73SvycnP9vL7LN4-39-urTW64lFNesFIZpmpQbSdFUclaloxZZmphgHMjRGlrFLwGNJ1S2raV1O08VWdthUysCNv7mhhSitg1Y3SDjl8Ng2apqPlT0azhe02af_0WY7MLH9HPMf8RfQMJmmpt</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Sadykov, N. R.</creator><creator>Skorkin, N. A.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090601</creationdate><title>Mathematical modeling of the process of interaction between radiation and disperse nanoparticles</title><author>Sadykov, N. R. ; Skorkin, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-4159c19709bf8346878511d1c73c022c335d7e3270ecf99adb68ababa6fdd6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerosols</topic><topic>Hydrosoles</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Optics of Clusters</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadykov, N. R.</creatorcontrib><creatorcontrib>Skorkin, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Atmospheric and oceanic optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadykov, N. R.</au><au>Skorkin, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of the process of interaction between radiation and disperse nanoparticles</atitle><jtitle>Atmospheric and oceanic optics</jtitle><stitle>Atmos Ocean Opt</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>22</volume><issue>3</issue><spage>284</spage><epage>289</epage><pages>284-289</pages><issn>1024-8560</issn><eissn>2070-0393</eissn><abstract>On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density W ∼ 1000 J/m 3 can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a stationary electric field. The required mass density of the nanoparticles and the magnitude of the pumping field have been estimated. A method is proposed for obtaining an active medium for amplification of microwave radiation in the 10-cm wavelength range by means of a stationary electric field. For this purpose, extended nanoparticles are to be dispersed.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S102485600903004X</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1024-8560
ispartof Atmospheric and oceanic optics, 2009-06, Vol.22 (3), p.284-289
issn 1024-8560
2070-0393
language eng
recordid cdi_crossref_primary_10_1134_S102485600903004X
source SpringerLink Journals - AutoHoldings
subjects Aerosols
Hydrosoles
Lasers
Optical Devices
Optics
Optics of Clusters
Photonics
Physics
Physics and Astronomy
title Mathematical modeling of the process of interaction between radiation and disperse nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20the%20process%20of%20interaction%20between%20radiation%20and%20disperse%20nanoparticles&rft.jtitle=Atmospheric%20and%20oceanic%20optics&rft.au=Sadykov,%20N.%20R.&rft.date=2009-06-01&rft.volume=22&rft.issue=3&rft.spage=284&rft.epage=289&rft.pages=284-289&rft.issn=1024-8560&rft.eissn=2070-0393&rft_id=info:doi/10.1134/S102485600903004X&rft_dat=%3Ccrossref_sprin%3E10_1134_S102485600903004X%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true