Mathematical modeling of the process of interaction between radiation and disperse nanoparticles
On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density W ∼ 1000 J/m 3 can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a statio...
Gespeichert in:
Veröffentlicht in: | Atmospheric and oceanic optics 2009-06, Vol.22 (3), p.284-289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 3 |
container_start_page | 284 |
container_title | Atmospheric and oceanic optics |
container_volume | 22 |
creator | Sadykov, N. R. Skorkin, N. A. |
description | On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density
W
∼ 1000 J/m
3
can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a stationary electric field. The required mass density of the nanoparticles and the magnitude of the pumping field have been estimated. A method is proposed for obtaining an active medium for amplification of microwave radiation in the 10-cm wavelength range by means of a stationary electric field. For this purpose, extended nanoparticles are to be dispersed. |
doi_str_mv | 10.1134/S102485600903004X |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S102485600903004X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S102485600903004X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-4159c19709bf8346878511d1c73c022c335d7e3270ecf99adb68ababa6fdd6e13</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKJgXf0B3vIHqi9JP5KjLH7BigcVvNU0eV2ztElJKuK_t3W9CfIOjzfzZhiGkHMGF4yJ4vKJAS9kWQEoEADF6wHJONSQg1DikGQLnS_8MTlJaQdQlapkGXl70NM7DnpyRvd0CBZ757c0dHSG6RiDwZSW0_kJozaTC562OH0iehq1dfoH0d5S69KIMSH12odRx9myx3RKjjrdJzz73SvycnP9vL7LN4-39-urTW64lFNesFIZpmpQbSdFUclaloxZZmphgHMjRGlrFLwGNJ1S2raV1O08VWdthUysCNv7mhhSitg1Y3SDjl8Ng2apqPlT0azhe02af_0WY7MLH9HPMf8RfQMJmmpt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mathematical modeling of the process of interaction between radiation and disperse nanoparticles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sadykov, N. R. ; Skorkin, N. A.</creator><creatorcontrib>Sadykov, N. R. ; Skorkin, N. A.</creatorcontrib><description>On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density
W
∼ 1000 J/m
3
can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a stationary electric field. The required mass density of the nanoparticles and the magnitude of the pumping field have been estimated. A method is proposed for obtaining an active medium for amplification of microwave radiation in the 10-cm wavelength range by means of a stationary electric field. For this purpose, extended nanoparticles are to be dispersed.</description><identifier>ISSN: 1024-8560</identifier><identifier>EISSN: 2070-0393</identifier><identifier>DOI: 10.1134/S102485600903004X</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Aerosols ; Hydrosoles ; Lasers ; Optical Devices ; Optics ; Optics of Clusters ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Atmospheric and oceanic optics, 2009-06, Vol.22 (3), p.284-289</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-4159c19709bf8346878511d1c73c022c335d7e3270ecf99adb68ababa6fdd6e13</citedby><cites>FETCH-LOGICAL-c288t-4159c19709bf8346878511d1c73c022c335d7e3270ecf99adb68ababa6fdd6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S102485600903004X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S102485600903004X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sadykov, N. R.</creatorcontrib><creatorcontrib>Skorkin, N. A.</creatorcontrib><title>Mathematical modeling of the process of interaction between radiation and disperse nanoparticles</title><title>Atmospheric and oceanic optics</title><addtitle>Atmos Ocean Opt</addtitle><description>On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density
W
∼ 1000 J/m
3
can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a stationary electric field. The required mass density of the nanoparticles and the magnitude of the pumping field have been estimated. A method is proposed for obtaining an active medium for amplification of microwave radiation in the 10-cm wavelength range by means of a stationary electric field. For this purpose, extended nanoparticles are to be dispersed.</description><subject>Aerosols</subject><subject>Hydrosoles</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Optics of Clusters</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>1024-8560</issn><issn>2070-0393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKJgXf0B3vIHqi9JP5KjLH7BigcVvNU0eV2ztElJKuK_t3W9CfIOjzfzZhiGkHMGF4yJ4vKJAS9kWQEoEADF6wHJONSQg1DikGQLnS_8MTlJaQdQlapkGXl70NM7DnpyRvd0CBZ757c0dHSG6RiDwZSW0_kJozaTC562OH0iehq1dfoH0d5S69KIMSH12odRx9myx3RKjjrdJzz73SvycnP9vL7LN4-39-urTW64lFNesFIZpmpQbSdFUclaloxZZmphgHMjRGlrFLwGNJ1S2raV1O08VWdthUysCNv7mhhSitg1Y3SDjl8Ng2apqPlT0azhe02af_0WY7MLH9HPMf8RfQMJmmpt</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Sadykov, N. R.</creator><creator>Skorkin, N. A.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090601</creationdate><title>Mathematical modeling of the process of interaction between radiation and disperse nanoparticles</title><author>Sadykov, N. R. ; Skorkin, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-4159c19709bf8346878511d1c73c022c335d7e3270ecf99adb68ababa6fdd6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerosols</topic><topic>Hydrosoles</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Optics of Clusters</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadykov, N. R.</creatorcontrib><creatorcontrib>Skorkin, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Atmospheric and oceanic optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadykov, N. R.</au><au>Skorkin, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of the process of interaction between radiation and disperse nanoparticles</atitle><jtitle>Atmospheric and oceanic optics</jtitle><stitle>Atmos Ocean Opt</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>22</volume><issue>3</issue><spage>284</spage><epage>289</epage><pages>284-289</pages><issn>1024-8560</issn><eissn>2070-0393</eissn><abstract>On the basis of an earlier derived set of material equations, the process of amplification of microwave radiation with wavelength λ ∼ 10 cm has been modeled. Radiation energy density
W
∼ 1000 J/m
3
can be achieved. The medium is pumped in the presence of conductive nanoparticles by means of a stationary electric field. The required mass density of the nanoparticles and the magnitude of the pumping field have been estimated. A method is proposed for obtaining an active medium for amplification of microwave radiation in the 10-cm wavelength range by means of a stationary electric field. For this purpose, extended nanoparticles are to be dispersed.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S102485600903004X</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-8560 |
ispartof | Atmospheric and oceanic optics, 2009-06, Vol.22 (3), p.284-289 |
issn | 1024-8560 2070-0393 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S102485600903004X |
source | SpringerLink Journals - AutoHoldings |
subjects | Aerosols Hydrosoles Lasers Optical Devices Optics Optics of Clusters Photonics Physics Physics and Astronomy |
title | Mathematical modeling of the process of interaction between radiation and disperse nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20the%20process%20of%20interaction%20between%20radiation%20and%20disperse%20nanoparticles&rft.jtitle=Atmospheric%20and%20oceanic%20optics&rft.au=Sadykov,%20N.%20R.&rft.date=2009-06-01&rft.volume=22&rft.issue=3&rft.spage=284&rft.epage=289&rft.pages=284-289&rft.issn=1024-8560&rft.eissn=2070-0393&rft_id=info:doi/10.1134/S102485600903004X&rft_dat=%3Ccrossref_sprin%3E10_1134_S102485600903004X%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |