Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape
The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded...
Gespeichert in:
Veröffentlicht in: | Russian journal of genetics 2020-02, Vol.56 (2), p.242-252 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 2 |
container_start_page | 242 |
container_title | Russian journal of genetics |
container_volume | 56 |
creator | Lashin, S. A. Mustafin, Z. S. Klimenko, A. I. Afonnikov, D. A. Matushkin, Yu. G. |
description | The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded by a trench”; these mechanisms are analyzed using computer modeling. We have studied the influence of various biological factors on the evolutionary perspective of microbial colonies, the reproduction rate of which is controlled by a protein consisting of two subunits encoded at different loci. Molecular genetic (mutation rate, affinity of subunits), population (fitness function landscape and population density), and ecological (concentration of available substrate in the habitat, flow intensity) factors have been considered. Our results demonstrate that the difference in fitness for various allelic combinations, while determining the shape of the fitness landscape, sets the optimal mutation rates to overcome its valleys and opens a window of opportunity for the evolution of the population toward the state of the highest average fitness. Moreover, depending on the fitness landscape type, either gradual or saltational evolutionary regimes are optimal for reaching the peak. |
doi_str_mv | 10.1134/S1022795420020076 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1022795420020076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1022795420020076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-38ec6717db0a7e1c08fd9d1495130307bdd95b1f65853154f2b2fe6a95ae5a703</originalsourceid><addsrcrecordid>eNp9UN1KwzAUDqLgnD6Ad3mB6knT9Mc7GZsKHRtO8bKkabpltklJ2oHXvrgpm1eCcOAczvfDdw5CtwTuCKHR_YZAGCYZi0IAX0l8hiYkhjSgNM7O_ezhYMQv0ZVzewACENMJ-p6Ztht6afFGtUPDe2U0NjXudxLPD6YZfhdLJawpFW_w2nQn4gNeHaQVplV6i3MjPLhUWrUcf-ykxq-Si90IcbyW_BN7o9F2oXotncM515UTvJPX6KLmjZM3pz5F74v52-w5yFdPL7PHPBBhSvuAplLECUmqEngiiYC0rrKKRBkjFCgkZVVlrCR1zFJGCYvqsAxrGfOMccl4AnSKyNHXX-KclXXRWR_WfhUEivGLxZ8vek141DjP1Vtpi70ZrPYx_xH9AGb1dRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape</title><source>SpringerLink Journals</source><creator>Lashin, S. A. ; Mustafin, Z. S. ; Klimenko, A. I. ; Afonnikov, D. A. ; Matushkin, Yu. G.</creator><creatorcontrib>Lashin, S. A. ; Mustafin, Z. S. ; Klimenko, A. I. ; Afonnikov, D. A. ; Matushkin, Yu. G.</creatorcontrib><description>The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded by a trench”; these mechanisms are analyzed using computer modeling. We have studied the influence of various biological factors on the evolutionary perspective of microbial colonies, the reproduction rate of which is controlled by a protein consisting of two subunits encoded at different loci. Molecular genetic (mutation rate, affinity of subunits), population (fitness function landscape and population density), and ecological (concentration of available substrate in the habitat, flow intensity) factors have been considered. Our results demonstrate that the difference in fitness for various allelic combinations, while determining the shape of the fitness landscape, sets the optimal mutation rates to overcome its valleys and opens a window of opportunity for the evolution of the population toward the state of the highest average fitness. Moreover, depending on the fitness landscape type, either gradual or saltational evolutionary regimes are optimal for reaching the peak.</description><identifier>ISSN: 1022-7954</identifier><identifier>EISSN: 1608-3369</identifier><identifier>DOI: 10.1134/S1022795420020076</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Human Genetics ; Mathematical Models and Methods ; Microbial Genetics and Genomics</subject><ispartof>Russian journal of genetics, 2020-02, Vol.56 (2), p.242-252</ispartof><rights>Pleiades Publishing, Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-38ec6717db0a7e1c08fd9d1495130307bdd95b1f65853154f2b2fe6a95ae5a703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1022795420020076$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1022795420020076$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lashin, S. A.</creatorcontrib><creatorcontrib>Mustafin, Z. S.</creatorcontrib><creatorcontrib>Klimenko, A. I.</creatorcontrib><creatorcontrib>Afonnikov, D. A.</creatorcontrib><creatorcontrib>Matushkin, Yu. G.</creatorcontrib><title>Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape</title><title>Russian journal of genetics</title><addtitle>Russ J Genet</addtitle><description>The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded by a trench”; these mechanisms are analyzed using computer modeling. We have studied the influence of various biological factors on the evolutionary perspective of microbial colonies, the reproduction rate of which is controlled by a protein consisting of two subunits encoded at different loci. Molecular genetic (mutation rate, affinity of subunits), population (fitness function landscape and population density), and ecological (concentration of available substrate in the habitat, flow intensity) factors have been considered. Our results demonstrate that the difference in fitness for various allelic combinations, while determining the shape of the fitness landscape, sets the optimal mutation rates to overcome its valleys and opens a window of opportunity for the evolution of the population toward the state of the highest average fitness. Moreover, depending on the fitness landscape type, either gradual or saltational evolutionary regimes are optimal for reaching the peak.</description><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Human Genetics</subject><subject>Mathematical Models and Methods</subject><subject>Microbial Genetics and Genomics</subject><issn>1022-7954</issn><issn>1608-3369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UN1KwzAUDqLgnD6Ad3mB6knT9Mc7GZsKHRtO8bKkabpltklJ2oHXvrgpm1eCcOAczvfDdw5CtwTuCKHR_YZAGCYZi0IAX0l8hiYkhjSgNM7O_ezhYMQv0ZVzewACENMJ-p6Ztht6afFGtUPDe2U0NjXudxLPD6YZfhdLJawpFW_w2nQn4gNeHaQVplV6i3MjPLhUWrUcf-ykxq-Si90IcbyW_BN7o9F2oXotncM515UTvJPX6KLmjZM3pz5F74v52-w5yFdPL7PHPBBhSvuAplLECUmqEngiiYC0rrKKRBkjFCgkZVVlrCR1zFJGCYvqsAxrGfOMccl4AnSKyNHXX-KclXXRWR_WfhUEivGLxZ8vek141DjP1Vtpi70ZrPYx_xH9AGb1dRM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lashin, S. A.</creator><creator>Mustafin, Z. S.</creator><creator>Klimenko, A. I.</creator><creator>Afonnikov, D. A.</creator><creator>Matushkin, Yu. G.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape</title><author>Lashin, S. A. ; Mustafin, Z. S. ; Klimenko, A. I. ; Afonnikov, D. A. ; Matushkin, Yu. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-38ec6717db0a7e1c08fd9d1495130307bdd95b1f65853154f2b2fe6a95ae5a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Human Genetics</topic><topic>Mathematical Models and Methods</topic><topic>Microbial Genetics and Genomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lashin, S. A.</creatorcontrib><creatorcontrib>Mustafin, Z. S.</creatorcontrib><creatorcontrib>Klimenko, A. I.</creatorcontrib><creatorcontrib>Afonnikov, D. A.</creatorcontrib><creatorcontrib>Matushkin, Yu. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lashin, S. A.</au><au>Mustafin, Z. S.</au><au>Klimenko, A. I.</au><au>Afonnikov, D. A.</au><au>Matushkin, Yu. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape</atitle><jtitle>Russian journal of genetics</jtitle><stitle>Russ J Genet</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><spage>242</spage><epage>252</epage><pages>242-252</pages><issn>1022-7954</issn><eissn>1608-3369</eissn><abstract>The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded by a trench”; these mechanisms are analyzed using computer modeling. We have studied the influence of various biological factors on the evolutionary perspective of microbial colonies, the reproduction rate of which is controlled by a protein consisting of two subunits encoded at different loci. Molecular genetic (mutation rate, affinity of subunits), population (fitness function landscape and population density), and ecological (concentration of available substrate in the habitat, flow intensity) factors have been considered. Our results demonstrate that the difference in fitness for various allelic combinations, while determining the shape of the fitness landscape, sets the optimal mutation rates to overcome its valleys and opens a window of opportunity for the evolution of the population toward the state of the highest average fitness. Moreover, depending on the fitness landscape type, either gradual or saltational evolutionary regimes are optimal for reaching the peak.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1022795420020076</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-7954 |
ispartof | Russian journal of genetics, 2020-02, Vol.56 (2), p.242-252 |
issn | 1022-7954 1608-3369 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1022795420020076 |
source | SpringerLink Journals |
subjects | Animal Genetics and Genomics Biomedical and Life Sciences Biomedicine Human Genetics Mathematical Models and Methods Microbial Genetics and Genomics |
title | Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Simulation%20of%20the%20Evolution%20of%20Microbial%20Population:%20Overcoming%20Local%20Minima%20When%20Reaching%20a%20Peak%20on%20the%20Fitness%20Landscape&rft.jtitle=Russian%20journal%20of%20genetics&rft.au=Lashin,%20S.%20A.&rft.date=2020-02-01&rft.volume=56&rft.issue=2&rft.spage=242&rft.epage=252&rft.pages=242-252&rft.issn=1022-7954&rft.eissn=1608-3369&rft_id=info:doi/10.1134/S1022795420020076&rft_dat=%3Ccrossref_sprin%3E10_1134_S1022795420020076%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |