Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape

The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of genetics 2020-02, Vol.56 (2), p.242-252
Hauptverfasser: Lashin, S. A., Mustafin, Z. S., Klimenko, A. I., Afonnikov, D. A., Matushkin, Yu. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 2
container_start_page 242
container_title Russian journal of genetics
container_volume 56
creator Lashin, S. A.
Mustafin, Z. S.
Klimenko, A. I.
Afonnikov, D. A.
Matushkin, Yu. G.
description The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded by a trench”; these mechanisms are analyzed using computer modeling. We have studied the influence of various biological factors on the evolutionary perspective of microbial colonies, the reproduction rate of which is controlled by a protein consisting of two subunits encoded at different loci. Molecular genetic (mutation rate, affinity of subunits), population (fitness function landscape and population density), and ecological (concentration of available substrate in the habitat, flow intensity) factors have been considered. Our results demonstrate that the difference in fitness for various allelic combinations, while determining the shape of the fitness landscape, sets the optimal mutation rates to overcome its valleys and opens a window of opportunity for the evolution of the population toward the state of the highest average fitness. Moreover, depending on the fitness landscape type, either gradual or saltational evolutionary regimes are optimal for reaching the peak.
doi_str_mv 10.1134/S1022795420020076
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1022795420020076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1022795420020076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-38ec6717db0a7e1c08fd9d1495130307bdd95b1f65853154f2b2fe6a95ae5a703</originalsourceid><addsrcrecordid>eNp9UN1KwzAUDqLgnD6Ad3mB6knT9Mc7GZsKHRtO8bKkabpltklJ2oHXvrgpm1eCcOAczvfDdw5CtwTuCKHR_YZAGCYZi0IAX0l8hiYkhjSgNM7O_ezhYMQv0ZVzewACENMJ-p6Ztht6afFGtUPDe2U0NjXudxLPD6YZfhdLJawpFW_w2nQn4gNeHaQVplV6i3MjPLhUWrUcf-ykxq-Si90IcbyW_BN7o9F2oXotncM515UTvJPX6KLmjZM3pz5F74v52-w5yFdPL7PHPBBhSvuAplLECUmqEngiiYC0rrKKRBkjFCgkZVVlrCR1zFJGCYvqsAxrGfOMccl4AnSKyNHXX-KclXXRWR_WfhUEivGLxZ8vek141DjP1Vtpi70ZrPYx_xH9AGb1dRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape</title><source>SpringerLink Journals</source><creator>Lashin, S. A. ; Mustafin, Z. S. ; Klimenko, A. I. ; Afonnikov, D. A. ; Matushkin, Yu. G.</creator><creatorcontrib>Lashin, S. A. ; Mustafin, Z. S. ; Klimenko, A. I. ; Afonnikov, D. A. ; Matushkin, Yu. G.</creatorcontrib><description>The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded by a trench”; these mechanisms are analyzed using computer modeling. We have studied the influence of various biological factors on the evolutionary perspective of microbial colonies, the reproduction rate of which is controlled by a protein consisting of two subunits encoded at different loci. Molecular genetic (mutation rate, affinity of subunits), population (fitness function landscape and population density), and ecological (concentration of available substrate in the habitat, flow intensity) factors have been considered. Our results demonstrate that the difference in fitness for various allelic combinations, while determining the shape of the fitness landscape, sets the optimal mutation rates to overcome its valleys and opens a window of opportunity for the evolution of the population toward the state of the highest average fitness. Moreover, depending on the fitness landscape type, either gradual or saltational evolutionary regimes are optimal for reaching the peak.</description><identifier>ISSN: 1022-7954</identifier><identifier>EISSN: 1608-3369</identifier><identifier>DOI: 10.1134/S1022795420020076</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Human Genetics ; Mathematical Models and Methods ; Microbial Genetics and Genomics</subject><ispartof>Russian journal of genetics, 2020-02, Vol.56 (2), p.242-252</ispartof><rights>Pleiades Publishing, Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-38ec6717db0a7e1c08fd9d1495130307bdd95b1f65853154f2b2fe6a95ae5a703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1022795420020076$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1022795420020076$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lashin, S. A.</creatorcontrib><creatorcontrib>Mustafin, Z. S.</creatorcontrib><creatorcontrib>Klimenko, A. I.</creatorcontrib><creatorcontrib>Afonnikov, D. A.</creatorcontrib><creatorcontrib>Matushkin, Yu. G.</creatorcontrib><title>Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape</title><title>Russian journal of genetics</title><addtitle>Russ J Genet</addtitle><description>The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded by a trench”; these mechanisms are analyzed using computer modeling. We have studied the influence of various biological factors on the evolutionary perspective of microbial colonies, the reproduction rate of which is controlled by a protein consisting of two subunits encoded at different loci. Molecular genetic (mutation rate, affinity of subunits), population (fitness function landscape and population density), and ecological (concentration of available substrate in the habitat, flow intensity) factors have been considered. Our results demonstrate that the difference in fitness for various allelic combinations, while determining the shape of the fitness landscape, sets the optimal mutation rates to overcome its valleys and opens a window of opportunity for the evolution of the population toward the state of the highest average fitness. Moreover, depending on the fitness landscape type, either gradual or saltational evolutionary regimes are optimal for reaching the peak.</description><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Human Genetics</subject><subject>Mathematical Models and Methods</subject><subject>Microbial Genetics and Genomics</subject><issn>1022-7954</issn><issn>1608-3369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UN1KwzAUDqLgnD6Ad3mB6knT9Mc7GZsKHRtO8bKkabpltklJ2oHXvrgpm1eCcOAczvfDdw5CtwTuCKHR_YZAGCYZi0IAX0l8hiYkhjSgNM7O_ezhYMQv0ZVzewACENMJ-p6Ztht6afFGtUPDe2U0NjXudxLPD6YZfhdLJawpFW_w2nQn4gNeHaQVplV6i3MjPLhUWrUcf-ykxq-Si90IcbyW_BN7o9F2oXotncM515UTvJPX6KLmjZM3pz5F74v52-w5yFdPL7PHPBBhSvuAplLECUmqEngiiYC0rrKKRBkjFCgkZVVlrCR1zFJGCYvqsAxrGfOMccl4AnSKyNHXX-KclXXRWR_WfhUEivGLxZ8vek141DjP1Vtpi70ZrPYx_xH9AGb1dRM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lashin, S. A.</creator><creator>Mustafin, Z. S.</creator><creator>Klimenko, A. I.</creator><creator>Afonnikov, D. A.</creator><creator>Matushkin, Yu. G.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape</title><author>Lashin, S. A. ; Mustafin, Z. S. ; Klimenko, A. I. ; Afonnikov, D. A. ; Matushkin, Yu. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-38ec6717db0a7e1c08fd9d1495130307bdd95b1f65853154f2b2fe6a95ae5a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Human Genetics</topic><topic>Mathematical Models and Methods</topic><topic>Microbial Genetics and Genomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lashin, S. A.</creatorcontrib><creatorcontrib>Mustafin, Z. S.</creatorcontrib><creatorcontrib>Klimenko, A. I.</creatorcontrib><creatorcontrib>Afonnikov, D. A.</creatorcontrib><creatorcontrib>Matushkin, Yu. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lashin, S. A.</au><au>Mustafin, Z. S.</au><au>Klimenko, A. I.</au><au>Afonnikov, D. A.</au><au>Matushkin, Yu. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape</atitle><jtitle>Russian journal of genetics</jtitle><stitle>Russ J Genet</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><spage>242</spage><epage>252</epage><pages>242-252</pages><issn>1022-7954</issn><eissn>1608-3369</eissn><abstract>The study focuses on the mechanisms of crossing the valleys of fitness by a population of haploid microorganisms, whose fitness depends on allelic values at two different loci and is determined by a complex landscape, the shape of which corresponds to the pattern “a mountain in the field surrounded by a trench”; these mechanisms are analyzed using computer modeling. We have studied the influence of various biological factors on the evolutionary perspective of microbial colonies, the reproduction rate of which is controlled by a protein consisting of two subunits encoded at different loci. Molecular genetic (mutation rate, affinity of subunits), population (fitness function landscape and population density), and ecological (concentration of available substrate in the habitat, flow intensity) factors have been considered. Our results demonstrate that the difference in fitness for various allelic combinations, while determining the shape of the fitness landscape, sets the optimal mutation rates to overcome its valleys and opens a window of opportunity for the evolution of the population toward the state of the highest average fitness. Moreover, depending on the fitness landscape type, either gradual or saltational evolutionary regimes are optimal for reaching the peak.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1022795420020076</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-7954
ispartof Russian journal of genetics, 2020-02, Vol.56 (2), p.242-252
issn 1022-7954
1608-3369
language eng
recordid cdi_crossref_primary_10_1134_S1022795420020076
source SpringerLink Journals
subjects Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Human Genetics
Mathematical Models and Methods
Microbial Genetics and Genomics
title Computer Simulation of the Evolution of Microbial Population: Overcoming Local Minima When Reaching a Peak on the Fitness Landscape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Simulation%20of%20the%20Evolution%20of%20Microbial%20Population:%20Overcoming%20Local%20Minima%20When%20Reaching%20a%20Peak%20on%20the%20Fitness%20Landscape&rft.jtitle=Russian%20journal%20of%20genetics&rft.au=Lashin,%20S.%20A.&rft.date=2020-02-01&rft.volume=56&rft.issue=2&rft.spage=242&rft.epage=252&rft.pages=242-252&rft.issn=1022-7954&rft.eissn=1608-3369&rft_id=info:doi/10.1134/S1022795420020076&rft_dat=%3Ccrossref_sprin%3E10_1134_S1022795420020076%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true