Photochemical and photophosphorylation activities of chloroplasts and leaf mesostructure in Chinese cabbage plants grown under illumination with light-emitting diodes

Leaf mesostructure, photochemical activity, and chloroplast photophosphorylation (PP) in the fourth true leaf of 28-day-old Chinese cabbage (Brassica chinensis L.) plants were investigated. Plants were grown under a light source based on red (650 nm) and blue (470 nm) light-emitting diodes (LED) wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of plant physiology 2010, Vol.57 (3), p.382-391
Hauptverfasser: Avercheva, O. V, Bassarskaya, E. M, Zhigalova, T. V, Berkovich, Yu. A, Smolyanina, S. O, Leont'eva, M. R, Erokhin, A. N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leaf mesostructure, photochemical activity, and chloroplast photophosphorylation (PP) in the fourth true leaf of 28-day-old Chinese cabbage (Brassica chinensis L.) plants were investigated. Plants were grown under a light source based on red (650 nm) and blue (470 nm) light-emitting diodes (LED) with red/blue photon flux ratio of 7: 1 and under illumination with high-pressure sodium lamp (HPSL) at photon flux densities of 391 ± 24 μmol/(m² s) (“normal irradiance”) and 107 ± 9 μmol/(m² s) (“low irradiance”) in photosynthetically active range. At normal irradiance, the leaf area in plants grown under HPSL was twofold higher than in LED-illuminated plants; other parameters of leaf mesostructure were little affected by spectral quality of incident light. The lowering of growth irradiance reduced the majority of leaf mesostructure parameters in plants grown under illumination with HPSL, whereas in LED-illuminated plants the lowered irradiance reduced only specific leaf weight but increased the leaf thickness and dimensions of mesophyll cells and chloroplasts. The photochemical activity of isolated chloroplasts was almost independent of growth irradiance and light spectral quality. Light quality and intensity used for plant growing had a considerable impact on PP in chloroplasts. At normal light intensity, the highest activity of noncyclic PP in chloroplasts was observed for plants grown under HPSL; at low light intensity the highest rates of PP were noted for plants grown under LED. The P/2e⁻ ratio, which characterizes the degree of PP coupling to electron transport in the chloroplast electron transport chain, showed a similar pattern. Thus, the narrow-band spectrum of the light source had little influence on leaf mesostructure and electron transport rates. However, this spectrum significantly affected the chloroplast PP activity. The PP patterns at low and normal light intensities were opposite for plants grown under LED and HPSL light sources. We suppose that growing plants under LED array at normal light intensity disturbed the chloroplast coupling system, thus preventing the effective use of light energy for ATP synthesis. At low light intensity, chloroplast PP activity was significantly higher under LED illumination, but plant growth was suppressed because of impaired adaptation to low light intensity.
ISSN:1021-4437
1608-3407
DOI:10.1134/S1021443710030106