On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group
Let G be a finite group. Its spectrum ω G is the set of all element orders of G . The prime spectrum π G is the set of all prime divisors of the order of G . The Gruenberg–Kegel graph (or the prime graph) Γ G is the simple graph with vertex set π G in which any two vertices p and q are adjacent i...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics 2022-08, Vol.317 (Suppl 1), p.S130-S135 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S135 |
---|---|
container_issue | Suppl 1 |
container_start_page | S130 |
container_title | Proceedings of the Steklov Institute of Mathematics |
container_volume | 317 |
creator | Maslova, N. V. Ilenko, K. A. |
description | Let
G
be a finite group. Its spectrum
ω
G
is the set of all element orders of
G
. The prime spectrum
π
G
is the set of all prime divisors of the order of
G
. The Gruenberg–Kegel graph (or the prime graph)
Γ
G
is the simple graph with vertex set
π
G
in which any two vertices
p
and
q
are adjacent if and only if
p
q
ω
G
. The structural Gruenberg–Kegel theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to
P
S
subscript
L
2
q
for some
q
. |
doi_str_mv | 10.1134/S0081543822030117 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0081543822030117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0081543822030117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-491717fd164a619989856e2cc03e84e1eaf1d9f866610a6358cdba409d6efd483</originalsourceid><addsrcrecordid>eNp9kEFOwzAURC0EEqVwAHa-QMA_dhx7WVW0ICq6KKwjx_lpU6V2ZDdI7LgDN-QkJCo7JFZfmjcz-hpCboHdAXBxv2FMQSa4SlPGGUB-RiaQcUiUZNk5mYw4GfkluYpxz5jIcqEnZL929LhDOveNs02FziL1NV2GHl2JYfv9-fWMW2wHxXS7ODLj6Kw9-Hikm-bQtTgg33eDXFFDX7yLvn035aAvgi_RNX08Oa7JRW3aiDe_d0reFg-v88dktV4-zWerxKaKHxOhIYe8rkAKI0FrpVUmMbWWcVQCAU0Nla6VlBKYkTxTtiqNYLqSWFdC8SmBU68NPsaAddGF5mDCRwGsGMcq_ow1ZNJTJg5et8VQ7H0f3PDmP6EfvC5sYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group</title><source>SpringerLink (Online service)</source><creator>Maslova, N. V. ; Ilenko, K. A.</creator><creatorcontrib>Maslova, N. V. ; Ilenko, K. A.</creatorcontrib><description>Let
G
be a finite group. Its spectrum
ω
G
is the set of all element orders of
G
. The prime spectrum
π
G
is the set of all prime divisors of the order of
G
. The Gruenberg–Kegel graph (or the prime graph)
Γ
G
is the simple graph with vertex set
π
G
in which any two vertices
p
and
q
are adjacent if and only if
p
q
ω
G
. The structural Gruenberg–Kegel theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to
P
S
subscript
L
2
q
for some
q
.</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543822030117</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2022-08, Vol.317 (Suppl 1), p.S130-S135</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-491717fd164a619989856e2cc03e84e1eaf1d9f866610a6358cdba409d6efd483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0081543822030117$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0081543822030117$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maslova, N. V.</creatorcontrib><creatorcontrib>Ilenko, K. A.</creatorcontrib><title>On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>Let
G
be a finite group. Its spectrum
ω
G
is the set of all element orders of
G
. The prime spectrum
π
G
is the set of all prime divisors of the order of
G
. The Gruenberg–Kegel graph (or the prime graph)
Γ
G
is the simple graph with vertex set
π
G
in which any two vertices
p
and
q
are adjacent if and only if
p
q
ω
G
. The structural Gruenberg–Kegel theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to
P
S
subscript
L
2
q
for some
q
.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAURC0EEqVwAHa-QMA_dhx7WVW0ICq6KKwjx_lpU6V2ZDdI7LgDN-QkJCo7JFZfmjcz-hpCboHdAXBxv2FMQSa4SlPGGUB-RiaQcUiUZNk5mYw4GfkluYpxz5jIcqEnZL929LhDOveNs02FziL1NV2GHl2JYfv9-fWMW2wHxXS7ODLj6Kw9-Hikm-bQtTgg33eDXFFDX7yLvn035aAvgi_RNX08Oa7JRW3aiDe_d0reFg-v88dktV4-zWerxKaKHxOhIYe8rkAKI0FrpVUmMbWWcVQCAU0Nla6VlBKYkTxTtiqNYLqSWFdC8SmBU68NPsaAddGF5mDCRwGsGMcq_ow1ZNJTJg5et8VQ7H0f3PDmP6EfvC5sYg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Maslova, N. V.</creator><creator>Ilenko, K. A.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group</title><author>Maslova, N. V. ; Ilenko, K. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-491717fd164a619989856e2cc03e84e1eaf1d9f866610a6358cdba409d6efd483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslova, N. V.</creatorcontrib><creatorcontrib>Ilenko, K. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslova, N. V.</au><au>Ilenko, K. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>317</volume><issue>Suppl 1</issue><spage>S130</spage><epage>S135</epage><pages>S130-S135</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>Let
G
be a finite group. Its spectrum
ω
G
is the set of all element orders of
G
. The prime spectrum
π
G
is the set of all prime divisors of the order of
G
. The Gruenberg–Kegel graph (or the prime graph)
Γ
G
is the simple graph with vertex set
π
G
in which any two vertices
p
and
q
are adjacent if and only if
p
q
ω
G
. The structural Gruenberg–Kegel theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to
P
S
subscript
L
2
q
for some
q
.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0081543822030117</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0081-5438 |
ispartof | Proceedings of the Steklov Institute of Mathematics, 2022-08, Vol.317 (Suppl 1), p.S130-S135 |
issn | 0081-5438 1531-8605 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S0081543822030117 |
source | SpringerLink (Online service) |
subjects | Mathematics Mathematics and Statistics |
title | On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Coincidence%20of%20Gruenberg%E2%80%93Kegel%20Graphs%20of%20an%20Almost%20Simple%20Group%20and%20a%20Nonsolvable%20Frobenius%20Group&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Maslova,%20N.%20V.&rft.date=2022-08-01&rft.volume=317&rft.issue=Suppl%201&rft.spage=S130&rft.epage=S135&rft.pages=S130-S135&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543822030117&rft_dat=%3Ccrossref_sprin%3E10_1134_S0081543822030117%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |