On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group

Let G be a finite group. Its spectrum ω G is the set of all element orders of G . The prime spectrum π G is the set of all prime divisors of the order of G . The Gruenberg–Kegel graph (or the prime graph) Γ G is the simple graph with vertex set π G in which any two vertices p and q are adjacent i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2022-08, Vol.317 (Suppl 1), p.S130-S135
Hauptverfasser: Maslova, N. V., Ilenko, K. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S135
container_issue Suppl 1
container_start_page S130
container_title Proceedings of the Steklov Institute of Mathematics
container_volume 317
creator Maslova, N. V.
Ilenko, K. A.
description Let G be a finite group. Its spectrum ω G is the set of all element orders of G . The prime spectrum π G is the set of all prime divisors of the order of G . The Gruenberg–Kegel graph (or the prime graph) Γ G is the simple graph with vertex set π G in which any two vertices p and q are adjacent if and only if p q ω G . The structural Gruenberg–Kegel theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to P S subscript L 2 q for some q .
doi_str_mv 10.1134/S0081543822030117
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0081543822030117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0081543822030117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-491717fd164a619989856e2cc03e84e1eaf1d9f866610a6358cdba409d6efd483</originalsourceid><addsrcrecordid>eNp9kEFOwzAURC0EEqVwAHa-QMA_dhx7WVW0ICq6KKwjx_lpU6V2ZDdI7LgDN-QkJCo7JFZfmjcz-hpCboHdAXBxv2FMQSa4SlPGGUB-RiaQcUiUZNk5mYw4GfkluYpxz5jIcqEnZL929LhDOveNs02FziL1NV2GHl2JYfv9-fWMW2wHxXS7ODLj6Kw9-Hikm-bQtTgg33eDXFFDX7yLvn035aAvgi_RNX08Oa7JRW3aiDe_d0reFg-v88dktV4-zWerxKaKHxOhIYe8rkAKI0FrpVUmMbWWcVQCAU0Nla6VlBKYkTxTtiqNYLqSWFdC8SmBU68NPsaAddGF5mDCRwGsGMcq_ow1ZNJTJg5et8VQ7H0f3PDmP6EfvC5sYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group</title><source>SpringerLink (Online service)</source><creator>Maslova, N. V. ; Ilenko, K. A.</creator><creatorcontrib>Maslova, N. V. ; Ilenko, K. A.</creatorcontrib><description>Let G be a finite group. Its spectrum ω G is the set of all element orders of G . The prime spectrum π G is the set of all prime divisors of the order of G . The Gruenberg–Kegel graph (or the prime graph) Γ G is the simple graph with vertex set π G in which any two vertices p and q are adjacent if and only if p q ω G . The structural Gruenberg–Kegel theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to P S subscript L 2 q for some q .</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543822030117</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2022-08, Vol.317 (Suppl 1), p.S130-S135</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-491717fd164a619989856e2cc03e84e1eaf1d9f866610a6358cdba409d6efd483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0081543822030117$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0081543822030117$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maslova, N. V.</creatorcontrib><creatorcontrib>Ilenko, K. A.</creatorcontrib><title>On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>Let G be a finite group. Its spectrum ω G is the set of all element orders of G . The prime spectrum π G is the set of all prime divisors of the order of G . The Gruenberg–Kegel graph (or the prime graph) Γ G is the simple graph with vertex set π G in which any two vertices p and q are adjacent if and only if p q ω G . The structural Gruenberg–Kegel theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to P S subscript L 2 q for some q .</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAURC0EEqVwAHa-QMA_dhx7WVW0ICq6KKwjx_lpU6V2ZDdI7LgDN-QkJCo7JFZfmjcz-hpCboHdAXBxv2FMQSa4SlPGGUB-RiaQcUiUZNk5mYw4GfkluYpxz5jIcqEnZL929LhDOveNs02FziL1NV2GHl2JYfv9-fWMW2wHxXS7ODLj6Kw9-Hikm-bQtTgg33eDXFFDX7yLvn035aAvgi_RNX08Oa7JRW3aiDe_d0reFg-v88dktV4-zWerxKaKHxOhIYe8rkAKI0FrpVUmMbWWcVQCAU0Nla6VlBKYkTxTtiqNYLqSWFdC8SmBU68NPsaAddGF5mDCRwGsGMcq_ow1ZNJTJg5et8VQ7H0f3PDmP6EfvC5sYg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Maslova, N. V.</creator><creator>Ilenko, K. A.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group</title><author>Maslova, N. V. ; Ilenko, K. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-491717fd164a619989856e2cc03e84e1eaf1d9f866610a6358cdba409d6efd483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslova, N. V.</creatorcontrib><creatorcontrib>Ilenko, K. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslova, N. V.</au><au>Ilenko, K. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>317</volume><issue>Suppl 1</issue><spage>S130</spage><epage>S135</epage><pages>S130-S135</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>Let G be a finite group. Its spectrum ω G is the set of all element orders of G . The prime spectrum π G is the set of all prime divisors of the order of G . The Gruenberg–Kegel graph (or the prime graph) Γ G is the simple graph with vertex set π G in which any two vertices p and q are adjacent if and only if p q ω G . The structural Gruenberg–Kegel theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to P S subscript L 2 q for some q .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0081543822030117</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0081-5438
ispartof Proceedings of the Steklov Institute of Mathematics, 2022-08, Vol.317 (Suppl 1), p.S130-S135
issn 0081-5438
1531-8605
language eng
recordid cdi_crossref_primary_10_1134_S0081543822030117
source SpringerLink (Online service)
subjects Mathematics
Mathematics and Statistics
title On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Coincidence%20of%20Gruenberg%E2%80%93Kegel%20Graphs%20of%20an%20Almost%20Simple%20Group%20and%20a%20Nonsolvable%20Frobenius%20Group&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Maslova,%20N.%20V.&rft.date=2022-08-01&rft.volume=317&rft.issue=Suppl%201&rft.spage=S130&rft.epage=S135&rft.pages=S130-S135&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543822030117&rft_dat=%3Ccrossref_sprin%3E10_1134_S0081543822030117%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true