Barbashin and krasovskii’s asymptotic stability theorem in application to control systems on smooth manifolds

We introduce the notion of so-called standard control system, whose phase space is a finite-dimensional smooth manifold satisfying a number of conditions; in particular, it is supposed to be connected, orientable, and having a countable atlas. For a given standard control system, we consider a set o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2015-12, Vol.291 (Suppl 1), p.208-221
1. Verfasser: Tonkov, E. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the notion of so-called standard control system, whose phase space is a finite-dimensional smooth manifold satisfying a number of conditions; in particular, it is supposed to be connected, orientable, and having a countable atlas. For a given standard control system, we consider a set of time translations and construct the closure of this set in the topology of uniform convergence on compact sets. In these terms, we study the conditions of uniform local reachability of a given trajectory. The main result is formulated in terms of a modified Lyapunov function. A simple example is considered.
ISSN:0081-5438
1531-8605
DOI:10.1134/S008154381509014X