Some classes of functions and Fourier coefficients with respect to general orthonormal systems

The a.e. convergence of an orthogonal series on [0, 1] depends strongly on the coefficients of this series. It is well known that a sufficient condition for the a.e. convergence of such a series is given by the Men’shov-Rademacher theorem. On the other hand, S. Banach proved that good differential p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2013-04, Vol.280 (1), p.156-168
Hauptverfasser: Gogoladze, L., Tsagareishvili, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue 1
container_start_page 156
container_title Proceedings of the Steklov Institute of Mathematics
container_volume 280
creator Gogoladze, L.
Tsagareishvili, V.
description The a.e. convergence of an orthogonal series on [0, 1] depends strongly on the coefficients of this series. It is well known that a sufficient condition for the a.e. convergence of such a series is given by the Men’shov-Rademacher theorem. On the other hand, S. Banach proved that good differential properties of a function do not guarantee the a.e. convergence on [0, 1] of the Fourier series of this function with respect to general orthonormal systems (ONSs). In the present study, we find conditions on the functions of an ONS under which the Fourier coefficients of functions of some differential classes satisfy the hypothesis of the Men’shov-Rademacher theorem.
doi_str_mv 10.1134/S0081543813010100
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0081543813010100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0081543813010100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-66062ed9ad68bbcc3d9ed4640d9db82457ed4ac8f64bc81b8c83f6d1670aa34e3</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgrX6At_zAarLJptmjFKtCwUP16pJNJu2WblIyKdK_N6XeBJnDzPDmPd48Qu45e-BcyMcVY5o3UmguGC_FLsiEN4JXWrHmkkxOcHXCr8kN4pYx2cxkOyFfqzgCtTuDCEijp_4QbB5iQGqCo4t4SAMkaiN4P9gBQkb6PeQNTYB7sJnmSNcQIJkdjSlvYohpLDMeMcOIt-TKmx3C3W-fks_F88f8tVq-v7zNn5aVrbXOlVJM1eBa45Tue2uFa8FJJZlrXa_r4rWsxmqvZG8177XVwivH1YwZIySIKeFnXZsiYgLf7dMwmnTsOOtOAXV_Aiqc-szBchvWkLpt-TYUm_-QfgBfo2n1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some classes of functions and Fourier coefficients with respect to general orthonormal systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gogoladze, L. ; Tsagareishvili, V.</creator><creatorcontrib>Gogoladze, L. ; Tsagareishvili, V.</creatorcontrib><description>The a.e. convergence of an orthogonal series on [0, 1] depends strongly on the coefficients of this series. It is well known that a sufficient condition for the a.e. convergence of such a series is given by the Men’shov-Rademacher theorem. On the other hand, S. Banach proved that good differential properties of a function do not guarantee the a.e. convergence on [0, 1] of the Fourier series of this function with respect to general orthonormal systems (ONSs). In the present study, we find conditions on the functions of an ONS under which the Fourier coefficients of functions of some differential classes satisfy the hypothesis of the Men’shov-Rademacher theorem.</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543813010100</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2013-04, Vol.280 (1), p.156-168</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-66062ed9ad68bbcc3d9ed4640d9db82457ed4ac8f64bc81b8c83f6d1670aa34e3</citedby><cites>FETCH-LOGICAL-c288t-66062ed9ad68bbcc3d9ed4640d9db82457ed4ac8f64bc81b8c83f6d1670aa34e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0081543813010100$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0081543813010100$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gogoladze, L.</creatorcontrib><creatorcontrib>Tsagareishvili, V.</creatorcontrib><title>Some classes of functions and Fourier coefficients with respect to general orthonormal systems</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>The a.e. convergence of an orthogonal series on [0, 1] depends strongly on the coefficients of this series. It is well known that a sufficient condition for the a.e. convergence of such a series is given by the Men’shov-Rademacher theorem. On the other hand, S. Banach proved that good differential properties of a function do not guarantee the a.e. convergence on [0, 1] of the Fourier series of this function with respect to general orthonormal systems (ONSs). In the present study, we find conditions on the functions of an ONS under which the Fourier coefficients of functions of some differential classes satisfy the hypothesis of the Men’shov-Rademacher theorem.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQDaJgrX6At_zAarLJptmjFKtCwUP16pJNJu2WblIyKdK_N6XeBJnDzPDmPd48Qu45e-BcyMcVY5o3UmguGC_FLsiEN4JXWrHmkkxOcHXCr8kN4pYx2cxkOyFfqzgCtTuDCEijp_4QbB5iQGqCo4t4SAMkaiN4P9gBQkb6PeQNTYB7sJnmSNcQIJkdjSlvYohpLDMeMcOIt-TKmx3C3W-fks_F88f8tVq-v7zNn5aVrbXOlVJM1eBa45Tue2uFa8FJJZlrXa_r4rWsxmqvZG8177XVwivH1YwZIySIKeFnXZsiYgLf7dMwmnTsOOtOAXV_Aiqc-szBchvWkLpt-TYUm_-QfgBfo2n1</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Gogoladze, L.</creator><creator>Tsagareishvili, V.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Some classes of functions and Fourier coefficients with respect to general orthonormal systems</title><author>Gogoladze, L. ; Tsagareishvili, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-66062ed9ad68bbcc3d9ed4640d9db82457ed4ac8f64bc81b8c83f6d1670aa34e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogoladze, L.</creatorcontrib><creatorcontrib>Tsagareishvili, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogoladze, L.</au><au>Tsagareishvili, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some classes of functions and Fourier coefficients with respect to general orthonormal systems</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>280</volume><issue>1</issue><spage>156</spage><epage>168</epage><pages>156-168</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>The a.e. convergence of an orthogonal series on [0, 1] depends strongly on the coefficients of this series. It is well known that a sufficient condition for the a.e. convergence of such a series is given by the Men’shov-Rademacher theorem. On the other hand, S. Banach proved that good differential properties of a function do not guarantee the a.e. convergence on [0, 1] of the Fourier series of this function with respect to general orthonormal systems (ONSs). In the present study, we find conditions on the functions of an ONS under which the Fourier coefficients of functions of some differential classes satisfy the hypothesis of the Men’shov-Rademacher theorem.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0081543813010100</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0081-5438
ispartof Proceedings of the Steklov Institute of Mathematics, 2013-04, Vol.280 (1), p.156-168
issn 0081-5438
1531-8605
language eng
recordid cdi_crossref_primary_10_1134_S0081543813010100
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
title Some classes of functions and Fourier coefficients with respect to general orthonormal systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20classes%20of%20functions%20and%20Fourier%20coefficients%20with%20respect%20to%20general%20orthonormal%20systems&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Gogoladze,%20L.&rft.date=2013-04-01&rft.volume=280&rft.issue=1&rft.spage=156&rft.epage=168&rft.pages=156-168&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543813010100&rft_dat=%3Ccrossref_sprin%3E10_1134_S0081543813010100%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true