Thermodynamics of high-purity calcium production

We present the results of thermodynamic analysis of the behavior of gaseous and gas-forming impurities at different stages of calcium production, including electrolysis of calcium chloride, vacuum distillation of calcium from copper–calcium alloy, mechanical dispersing, and remelting and granulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of inorganic chemistry 2016-03, Vol.61 (3), p.344-350
Hauptverfasser: Kotsar’, M. L., Talanov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 3
container_start_page 344
container_title Russian journal of inorganic chemistry
container_volume 61
creator Kotsar’, M. L.
Talanov, A. A.
description We present the results of thermodynamic analysis of the behavior of gaseous and gas-forming impurities at different stages of calcium production, including electrolysis of calcium chloride, vacuum distillation of calcium from copper–calcium alloy, mechanical dispersing, and remelting and granulation of distilled calcium from the melt. The mechanisms of transfer of H, C, N, and O impurities at all stages of the processes under study are discussed. It is shown that in order to produce high-purity calcium, deep degassing needs to be performed when heating the materials loaded at the distillation, remelting, and granulation stages under condition that the equipment is highly air-tight. Distillation of calcium is recommended to be carried out at temperatures that exceed the process start temperature by no more than 20 K.
doi_str_mv 10.1134/S003602361603013X
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S003602361603013X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S003602361603013X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-bee1cdc310ed396bdbf2e113e94a08585c2629fd5fbdee4a96f900121c995c093</originalsourceid><addsrcrecordid>eNp9j01LxDAYhIMoWFd_gLf-gej7Jm1sjrL4sbDgwRW8lTQf2yzbpiTtof_eLutN8DSHmWeYIeQe4QGRF4-fAFwA4wIFcED-fUEyLDnSSiC_JNnJpif_mtykdAAoCniqMgK71sYumLlXndcpDy5v_b6lwxT9OOdaHbWfunyIwUx69KG_JVdOHZO9-9UV-Xp92a3f6fbjbbN-3lLNqmqkjbWojeYI1nApGtM4ZpelVhYKqrIqNRNMOlO6xlhbKCmcBECGWspSg-QrgudeHUNK0bp6iL5Tca4R6tPl-s_lhWFnJi3Zfm9jfQhT7JeZ_0A_TRxYuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamics of high-purity calcium production</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kotsar’, M. L. ; Talanov, A. A.</creator><creatorcontrib>Kotsar’, M. L. ; Talanov, A. A.</creatorcontrib><description>We present the results of thermodynamic analysis of the behavior of gaseous and gas-forming impurities at different stages of calcium production, including electrolysis of calcium chloride, vacuum distillation of calcium from copper–calcium alloy, mechanical dispersing, and remelting and granulation of distilled calcium from the melt. The mechanisms of transfer of H, C, N, and O impurities at all stages of the processes under study are discussed. It is shown that in order to produce high-purity calcium, deep degassing needs to be performed when heating the materials loaded at the distillation, remelting, and granulation stages under condition that the equipment is highly air-tight. Distillation of calcium is recommended to be carried out at temperatures that exceed the process start temperature by no more than 20 K.</description><identifier>ISSN: 0036-0236</identifier><identifier>EISSN: 1531-8613</identifier><identifier>DOI: 10.1134/S003602361603013X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Inorganic Chemistry ; Physical Methods of Investigation</subject><ispartof>Russian journal of inorganic chemistry, 2016-03, Vol.61 (3), p.344-350</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-bee1cdc310ed396bdbf2e113e94a08585c2629fd5fbdee4a96f900121c995c093</citedby><cites>FETCH-LOGICAL-c288t-bee1cdc310ed396bdbf2e113e94a08585c2629fd5fbdee4a96f900121c995c093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S003602361603013X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S003602361603013X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kotsar’, M. L.</creatorcontrib><creatorcontrib>Talanov, A. A.</creatorcontrib><title>Thermodynamics of high-purity calcium production</title><title>Russian journal of inorganic chemistry</title><addtitle>Russ. J. Inorg. Chem</addtitle><description>We present the results of thermodynamic analysis of the behavior of gaseous and gas-forming impurities at different stages of calcium production, including electrolysis of calcium chloride, vacuum distillation of calcium from copper–calcium alloy, mechanical dispersing, and remelting and granulation of distilled calcium from the melt. The mechanisms of transfer of H, C, N, and O impurities at all stages of the processes under study are discussed. It is shown that in order to produce high-purity calcium, deep degassing needs to be performed when heating the materials loaded at the distillation, remelting, and granulation stages under condition that the equipment is highly air-tight. Distillation of calcium is recommended to be carried out at temperatures that exceed the process start temperature by no more than 20 K.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Inorganic Chemistry</subject><subject>Physical Methods of Investigation</subject><issn>0036-0236</issn><issn>1531-8613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAYhIMoWFd_gLf-gej7Jm1sjrL4sbDgwRW8lTQf2yzbpiTtof_eLutN8DSHmWeYIeQe4QGRF4-fAFwA4wIFcED-fUEyLDnSSiC_JNnJpif_mtykdAAoCniqMgK71sYumLlXndcpDy5v_b6lwxT9OOdaHbWfunyIwUx69KG_JVdOHZO9-9UV-Xp92a3f6fbjbbN-3lLNqmqkjbWojeYI1nApGtM4ZpelVhYKqrIqNRNMOlO6xlhbKCmcBECGWspSg-QrgudeHUNK0bp6iL5Tca4R6tPl-s_lhWFnJi3Zfm9jfQhT7JeZ_0A_TRxYuQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Kotsar’, M. L.</creator><creator>Talanov, A. A.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160301</creationdate><title>Thermodynamics of high-purity calcium production</title><author>Kotsar’, M. L. ; Talanov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-bee1cdc310ed396bdbf2e113e94a08585c2629fd5fbdee4a96f900121c995c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Inorganic Chemistry</topic><topic>Physical Methods of Investigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotsar’, M. L.</creatorcontrib><creatorcontrib>Talanov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotsar’, M. L.</au><au>Talanov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of high-purity calcium production</atitle><jtitle>Russian journal of inorganic chemistry</jtitle><stitle>Russ. J. Inorg. Chem</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>61</volume><issue>3</issue><spage>344</spage><epage>350</epage><pages>344-350</pages><issn>0036-0236</issn><eissn>1531-8613</eissn><abstract>We present the results of thermodynamic analysis of the behavior of gaseous and gas-forming impurities at different stages of calcium production, including electrolysis of calcium chloride, vacuum distillation of calcium from copper–calcium alloy, mechanical dispersing, and remelting and granulation of distilled calcium from the melt. The mechanisms of transfer of H, C, N, and O impurities at all stages of the processes under study are discussed. It is shown that in order to produce high-purity calcium, deep degassing needs to be performed when heating the materials loaded at the distillation, remelting, and granulation stages under condition that the equipment is highly air-tight. Distillation of calcium is recommended to be carried out at temperatures that exceed the process start temperature by no more than 20 K.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S003602361603013X</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-0236
ispartof Russian journal of inorganic chemistry, 2016-03, Vol.61 (3), p.344-350
issn 0036-0236
1531-8613
language eng
recordid cdi_crossref_primary_10_1134_S003602361603013X
source SpringerLink Journals - AutoHoldings
subjects Chemistry
Chemistry and Materials Science
Inorganic Chemistry
Physical Methods of Investigation
title Thermodynamics of high-purity calcium production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20high-purity%20calcium%20production&rft.jtitle=Russian%20journal%20of%20inorganic%20chemistry&rft.au=Kotsar%E2%80%99,%20M.%20L.&rft.date=2016-03-01&rft.volume=61&rft.issue=3&rft.spage=344&rft.epage=350&rft.pages=344-350&rft.issn=0036-0236&rft.eissn=1531-8613&rft_id=info:doi/10.1134/S003602361603013X&rft_dat=%3Ccrossref_sprin%3E10_1134_S003602361603013X%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true