Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion
Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were...
Gespeichert in:
Veröffentlicht in: | Combustion, explosion, and shock waves explosion, and shock waves, 2015, Vol.51 (1), p.100-106 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 1 |
container_start_page | 100 |
container_title | Combustion, explosion, and shock waves |
container_volume | 51 |
creator | Zhigach, A. N. Leipunskii, I. O. Pivkina, A. N. Muravyev, N. V. Monogarov, K. A. Kuskov, M. L. Afanasenkova, E. S. Berezkina, N. G. Pshechenkov, P. A. Bragin, A. A. |
description | Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were investigated by x-ray diffraction analysis, scanning electron microscopy, and local x-ray analysis. The combustion of these mixtures with changing particle size of the components and composition of the coating on the metal particles was studied. It was found that, when the composites produced by atomization drying were stored as loose powder, HMX crystals grew, which increased the burning rate of compressed samples from 19 to 55 mm/s in the pressure range 3–10 MPa, and the pressure exponent varied from 0.34 to 0.84, depending on how the burning rate correlates with the pressure. |
doi_str_mv | 10.1134/S0010508215010104 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0010508215010104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0010508215010104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-b037dc97980395366edc95454b507b325a12141f5ffd0cfc237b6cec60c69eb73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqHwANzyAA3d9U-ccKsqSpGKOBQkblHsOOCqsSs7OfTtSVRuSJx2VzPfajSE3CM8IDK-2AEgCCgoinFB4BckQSFZVjAuLkkyydmkX5ObGPcAQCnPE7JeHobOuqFbbF4_U1c7r3139NH2Jj6mu5Prv020cZ52Vgcf-zDofghmntauSUerGmJvvbslV219iObud87Ix_rpfbXJtm_PL6vlNtO0KPpMAZONLmVZACsFy3MzXoILrgRIxaiokSLHVrRtA7rVlEmVa6Nz0HlplGQzgue_U5gYTFsdg-3qcKoQqqmI6k8RI0PPTBy97suEau-H4MaY_0A_Eglfng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion</title><source>SpringerNature Journals</source><creator>Zhigach, A. N. ; Leipunskii, I. O. ; Pivkina, A. N. ; Muravyev, N. V. ; Monogarov, K. A. ; Kuskov, M. L. ; Afanasenkova, E. S. ; Berezkina, N. G. ; Pshechenkov, P. A. ; Bragin, A. A.</creator><creatorcontrib>Zhigach, A. N. ; Leipunskii, I. O. ; Pivkina, A. N. ; Muravyev, N. V. ; Monogarov, K. A. ; Kuskov, M. L. ; Afanasenkova, E. S. ; Berezkina, N. G. ; Pshechenkov, P. A. ; Bragin, A. A.</creatorcontrib><description>Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were investigated by x-ray diffraction analysis, scanning electron microscopy, and local x-ray analysis. The combustion of these mixtures with changing particle size of the components and composition of the coating on the metal particles was studied. It was found that, when the composites produced by atomization drying were stored as loose powder, HMX crystals grew, which increased the burning rate of compressed samples from 19 to 55 mm/s in the pressure range 3–10 MPa, and the pressure exponent varied from 0.34 to 0.84, depending on how the burning rate correlates with the pressure.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508215010104</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Physical Chemistry ; Physics ; Physics and Astronomy ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2015, Vol.51 (1), p.100-106</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-b037dc97980395366edc95454b507b325a12141f5ffd0cfc237b6cec60c69eb73</citedby><cites>FETCH-LOGICAL-c288t-b037dc97980395366edc95454b507b325a12141f5ffd0cfc237b6cec60c69eb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508215010104$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508215010104$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhigach, A. N.</creatorcontrib><creatorcontrib>Leipunskii, I. O.</creatorcontrib><creatorcontrib>Pivkina, A. N.</creatorcontrib><creatorcontrib>Muravyev, N. V.</creatorcontrib><creatorcontrib>Monogarov, K. A.</creatorcontrib><creatorcontrib>Kuskov, M. L.</creatorcontrib><creatorcontrib>Afanasenkova, E. S.</creatorcontrib><creatorcontrib>Berezkina, N. G.</creatorcontrib><creatorcontrib>Pshechenkov, P. A.</creatorcontrib><creatorcontrib>Bragin, A. A.</creatorcontrib><title>Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were investigated by x-ray diffraction analysis, scanning electron microscopy, and local x-ray analysis. The combustion of these mixtures with changing particle size of the components and composition of the coating on the metal particles was studied. It was found that, when the composites produced by atomization drying were stored as loose powder, HMX crystals grew, which increased the burning rate of compressed samples from 19 to 55 mm/s in the pressure range 3–10 MPa, and the pressure exponent varied from 0.34 to 0.84, depending on how the burning rate correlates with the pressure.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqHwANzyAA3d9U-ccKsqSpGKOBQkblHsOOCqsSs7OfTtSVRuSJx2VzPfajSE3CM8IDK-2AEgCCgoinFB4BckQSFZVjAuLkkyydmkX5ObGPcAQCnPE7JeHobOuqFbbF4_U1c7r3139NH2Jj6mu5Prv020cZ52Vgcf-zDofghmntauSUerGmJvvbslV219iObud87Ix_rpfbXJtm_PL6vlNtO0KPpMAZONLmVZACsFy3MzXoILrgRIxaiokSLHVrRtA7rVlEmVa6Nz0HlplGQzgue_U5gYTFsdg-3qcKoQqqmI6k8RI0PPTBy97suEau-H4MaY_0A_Eglfng</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Zhigach, A. N.</creator><creator>Leipunskii, I. O.</creator><creator>Pivkina, A. N.</creator><creator>Muravyev, N. V.</creator><creator>Monogarov, K. A.</creator><creator>Kuskov, M. L.</creator><creator>Afanasenkova, E. S.</creator><creator>Berezkina, N. G.</creator><creator>Pshechenkov, P. A.</creator><creator>Bragin, A. A.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion</title><author>Zhigach, A. N. ; Leipunskii, I. O. ; Pivkina, A. N. ; Muravyev, N. V. ; Monogarov, K. A. ; Kuskov, M. L. ; Afanasenkova, E. S. ; Berezkina, N. G. ; Pshechenkov, P. A. ; Bragin, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-b037dc97980395366edc95454b507b325a12141f5ffd0cfc237b6cec60c69eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhigach, A. N.</creatorcontrib><creatorcontrib>Leipunskii, I. O.</creatorcontrib><creatorcontrib>Pivkina, A. N.</creatorcontrib><creatorcontrib>Muravyev, N. V.</creatorcontrib><creatorcontrib>Monogarov, K. A.</creatorcontrib><creatorcontrib>Kuskov, M. L.</creatorcontrib><creatorcontrib>Afanasenkova, E. S.</creatorcontrib><creatorcontrib>Berezkina, N. G.</creatorcontrib><creatorcontrib>Pshechenkov, P. A.</creatorcontrib><creatorcontrib>Bragin, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhigach, A. N.</au><au>Leipunskii, I. O.</au><au>Pivkina, A. N.</au><au>Muravyev, N. V.</au><au>Monogarov, K. A.</au><au>Kuskov, M. L.</au><au>Afanasenkova, E. S.</au><au>Berezkina, N. G.</au><au>Pshechenkov, P. A.</au><au>Bragin, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2015</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>100</spage><epage>106</epage><pages>100-106</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were investigated by x-ray diffraction analysis, scanning electron microscopy, and local x-ray analysis. The combustion of these mixtures with changing particle size of the components and composition of the coating on the metal particles was studied. It was found that, when the composites produced by atomization drying were stored as loose powder, HMX crystals grew, which increased the burning rate of compressed samples from 19 to 55 mm/s in the pressure range 3–10 MPa, and the pressure exponent varied from 0.34 to 0.84, depending on how the burning rate correlates with the pressure.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508215010104</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-5082 |
ispartof | Combustion, explosion, and shock waves, 2015, Vol.51 (1), p.100-106 |
issn | 0010-5082 1573-8345 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S0010508215010104 |
source | SpringerNature Journals |
subjects | Classical and Continuum Physics Classical Mechanics Control Dynamical Systems Engineering Physical Chemistry Physics Physics and Astronomy Vibration |
title | Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminum/HMX%20nanocomposites:%20Synthesis,%20microstructure,%20and%20combustion&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Zhigach,%20A.%20N.&rft.date=2015&rft.volume=51&rft.issue=1&rft.spage=100&rft.epage=106&rft.pages=100-106&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508215010104&rft_dat=%3Ccrossref_sprin%3E10_1134_S0010508215010104%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |