Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion

Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion, explosion, and shock waves explosion, and shock waves, 2015, Vol.51 (1), p.100-106
Hauptverfasser: Zhigach, A. N., Leipunskii, I. O., Pivkina, A. N., Muravyev, N. V., Monogarov, K. A., Kuskov, M. L., Afanasenkova, E. S., Berezkina, N. G., Pshechenkov, P. A., Bragin, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 1
container_start_page 100
container_title Combustion, explosion, and shock waves
container_volume 51
creator Zhigach, A. N.
Leipunskii, I. O.
Pivkina, A. N.
Muravyev, N. V.
Monogarov, K. A.
Kuskov, M. L.
Afanasenkova, E. S.
Berezkina, N. G.
Pshechenkov, P. A.
Bragin, A. A.
description Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were investigated by x-ray diffraction analysis, scanning electron microscopy, and local x-ray analysis. The combustion of these mixtures with changing particle size of the components and composition of the coating on the metal particles was studied. It was found that, when the composites produced by atomization drying were stored as loose powder, HMX crystals grew, which increased the burning rate of compressed samples from 19 to 55 mm/s in the pressure range 3–10 MPa, and the pressure exponent varied from 0.34 to 0.84, depending on how the burning rate correlates with the pressure.
doi_str_mv 10.1134/S0010508215010104
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0010508215010104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0010508215010104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-b037dc97980395366edc95454b507b325a12141f5ffd0cfc237b6cec60c69eb73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqHwANzyAA3d9U-ccKsqSpGKOBQkblHsOOCqsSs7OfTtSVRuSJx2VzPfajSE3CM8IDK-2AEgCCgoinFB4BckQSFZVjAuLkkyydmkX5ObGPcAQCnPE7JeHobOuqFbbF4_U1c7r3139NH2Jj6mu5Prv020cZ52Vgcf-zDofghmntauSUerGmJvvbslV219iObud87Ix_rpfbXJtm_PL6vlNtO0KPpMAZONLmVZACsFy3MzXoILrgRIxaiokSLHVrRtA7rVlEmVa6Nz0HlplGQzgue_U5gYTFsdg-3qcKoQqqmI6k8RI0PPTBy97suEau-H4MaY_0A_Eglfng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion</title><source>SpringerNature Journals</source><creator>Zhigach, A. N. ; Leipunskii, I. O. ; Pivkina, A. N. ; Muravyev, N. V. ; Monogarov, K. A. ; Kuskov, M. L. ; Afanasenkova, E. S. ; Berezkina, N. G. ; Pshechenkov, P. A. ; Bragin, A. A.</creator><creatorcontrib>Zhigach, A. N. ; Leipunskii, I. O. ; Pivkina, A. N. ; Muravyev, N. V. ; Monogarov, K. A. ; Kuskov, M. L. ; Afanasenkova, E. S. ; Berezkina, N. G. ; Pshechenkov, P. A. ; Bragin, A. A.</creatorcontrib><description>Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were investigated by x-ray diffraction analysis, scanning electron microscopy, and local x-ray analysis. The combustion of these mixtures with changing particle size of the components and composition of the coating on the metal particles was studied. It was found that, when the composites produced by atomization drying were stored as loose powder, HMX crystals grew, which increased the burning rate of compressed samples from 19 to 55 mm/s in the pressure range 3–10 MPa, and the pressure exponent varied from 0.34 to 0.84, depending on how the burning rate correlates with the pressure.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508215010104</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Physical Chemistry ; Physics ; Physics and Astronomy ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2015, Vol.51 (1), p.100-106</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-b037dc97980395366edc95454b507b325a12141f5ffd0cfc237b6cec60c69eb73</citedby><cites>FETCH-LOGICAL-c288t-b037dc97980395366edc95454b507b325a12141f5ffd0cfc237b6cec60c69eb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508215010104$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508215010104$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhigach, A. N.</creatorcontrib><creatorcontrib>Leipunskii, I. O.</creatorcontrib><creatorcontrib>Pivkina, A. N.</creatorcontrib><creatorcontrib>Muravyev, N. V.</creatorcontrib><creatorcontrib>Monogarov, K. A.</creatorcontrib><creatorcontrib>Kuskov, M. L.</creatorcontrib><creatorcontrib>Afanasenkova, E. S.</creatorcontrib><creatorcontrib>Berezkina, N. G.</creatorcontrib><creatorcontrib>Pshechenkov, P. A.</creatorcontrib><creatorcontrib>Bragin, A. A.</creatorcontrib><title>Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were investigated by x-ray diffraction analysis, scanning electron microscopy, and local x-ray analysis. The combustion of these mixtures with changing particle size of the components and composition of the coating on the metal particles was studied. It was found that, when the composites produced by atomization drying were stored as loose powder, HMX crystals grew, which increased the burning rate of compressed samples from 19 to 55 mm/s in the pressure range 3–10 MPa, and the pressure exponent varied from 0.34 to 0.84, depending on how the burning rate correlates with the pressure.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqHwANzyAA3d9U-ccKsqSpGKOBQkblHsOOCqsSs7OfTtSVRuSJx2VzPfajSE3CM8IDK-2AEgCCgoinFB4BckQSFZVjAuLkkyydmkX5ObGPcAQCnPE7JeHobOuqFbbF4_U1c7r3139NH2Jj6mu5Prv020cZ52Vgcf-zDofghmntauSUerGmJvvbslV219iObud87Ix_rpfbXJtm_PL6vlNtO0KPpMAZONLmVZACsFy3MzXoILrgRIxaiokSLHVrRtA7rVlEmVa6Nz0HlplGQzgue_U5gYTFsdg-3qcKoQqqmI6k8RI0PPTBy97suEau-H4MaY_0A_Eglfng</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Zhigach, A. N.</creator><creator>Leipunskii, I. O.</creator><creator>Pivkina, A. N.</creator><creator>Muravyev, N. V.</creator><creator>Monogarov, K. A.</creator><creator>Kuskov, M. L.</creator><creator>Afanasenkova, E. S.</creator><creator>Berezkina, N. G.</creator><creator>Pshechenkov, P. A.</creator><creator>Bragin, A. A.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion</title><author>Zhigach, A. N. ; Leipunskii, I. O. ; Pivkina, A. N. ; Muravyev, N. V. ; Monogarov, K. A. ; Kuskov, M. L. ; Afanasenkova, E. S. ; Berezkina, N. G. ; Pshechenkov, P. A. ; Bragin, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-b037dc97980395366edc95454b507b325a12141f5ffd0cfc237b6cec60c69eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhigach, A. N.</creatorcontrib><creatorcontrib>Leipunskii, I. O.</creatorcontrib><creatorcontrib>Pivkina, A. N.</creatorcontrib><creatorcontrib>Muravyev, N. V.</creatorcontrib><creatorcontrib>Monogarov, K. A.</creatorcontrib><creatorcontrib>Kuskov, M. L.</creatorcontrib><creatorcontrib>Afanasenkova, E. S.</creatorcontrib><creatorcontrib>Berezkina, N. G.</creatorcontrib><creatorcontrib>Pshechenkov, P. A.</creatorcontrib><creatorcontrib>Bragin, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhigach, A. N.</au><au>Leipunskii, I. O.</au><au>Pivkina, A. N.</au><au>Muravyev, N. V.</au><au>Monogarov, K. A.</au><au>Kuskov, M. L.</au><au>Afanasenkova, E. S.</au><au>Berezkina, N. G.</au><au>Pshechenkov, P. A.</au><au>Bragin, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2015</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>100</spage><epage>106</epage><pages>100-106</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were investigated by x-ray diffraction analysis, scanning electron microscopy, and local x-ray analysis. The combustion of these mixtures with changing particle size of the components and composition of the coating on the metal particles was studied. It was found that, when the composites produced by atomization drying were stored as loose powder, HMX crystals grew, which increased the burning rate of compressed samples from 19 to 55 mm/s in the pressure range 3–10 MPa, and the pressure exponent varied from 0.34 to 0.84, depending on how the burning rate correlates with the pressure.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508215010104</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-5082
ispartof Combustion, explosion, and shock waves, 2015, Vol.51 (1), p.100-106
issn 0010-5082
1573-8345
language eng
recordid cdi_crossref_primary_10_1134_S0010508215010104
source SpringerNature Journals
subjects Classical and Continuum Physics
Classical Mechanics
Control
Dynamical Systems
Engineering
Physical Chemistry
Physics
Physics and Astronomy
Vibration
title Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminum/HMX%20nanocomposites:%20Synthesis,%20microstructure,%20and%20combustion&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Zhigach,%20A.%20N.&rft.date=2015&rft.volume=51&rft.issue=1&rft.spage=100&rft.epage=106&rft.pages=100-106&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508215010104&rft_dat=%3Ccrossref_sprin%3E10_1134_S0010508215010104%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true