Nanostructured explosives produced by vapor deposition: Structure and explosive properties
This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosi...
Gespeichert in:
Veröffentlicht in: | Combustion, explosion, and shock waves explosion, and shock waves, 2015, Vol.51 (1), p.80-85 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 80 |
container_title | Combustion, explosion, and shock waves |
container_volume | 51 |
creator | Mil’chenko, D. V. Gubachev, V. A. Andreevskikh, L. A. Vakhmistrov, S. A. Mikhailov, A. L. Burnashov, V. A. Khaldeev, E. V. Pyatoikina, A. I. Zhuravlev, S. S. German, V. N. |
description | This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosive vapor on the substrate. Under these conditions, it has been shown that nanostructured polycrystalline layers of explosives containing a large number of micro-defects (pores and dislocations) are formed. In the explosive transformation in the deposited explosive layer, nano- and submicron-sized defects of the structure act as hot spots. The result is a significant reduction in the critical detonation dimensions. The nanostructured explosives studied by the authors are able to detonate at a layer thickness of 20–100 µm. Furthermore, their detonation velocity is substantially less dependent on the layer thickness than that of charges of the same explosives made by traditional technologies. Nanostructured explosives can also be used as components of explosive compositions with improved detonability. |
doi_str_mv | 10.1134/S0010508215010086 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0010508215010086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0010508215010086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-ddf3348f9ce8a53489779f9629a30ea644f580cb4070e29eb856313f29a269263</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQhxdRsFYfwFteIDr7N7vepKgVih6qFy9hk8xKSs2G3aTYt3dDFQTB0_yYb75hGEIuKVxRysX1GoCCBM2oTAG0OiIzKgueay7kMZlNOJ_4KTmLcQMAjAk1I29PtvNxCGM9jAGbDD_7rY_tDmPWB9-MdepV-2xnex-yBvvEhtZ3N9n6x8ls90ubrB7D0GI8JyfObiNefNc5eb2_e1ks89Xzw-PidpXXTOshbxrHudDO1KitTMkUhXFGMWM5oFVCOKmhrgQUgMxgpaXilLvEmTJM8Tmhh7118DEGdGUf2g8b9iWFcnpO-ec5yWEHJ6bZ7h1DufFj6NKZ_0hfg6Vnrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanostructured explosives produced by vapor deposition: Structure and explosive properties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mil’chenko, D. V. ; Gubachev, V. A. ; Andreevskikh, L. A. ; Vakhmistrov, S. A. ; Mikhailov, A. L. ; Burnashov, V. A. ; Khaldeev, E. V. ; Pyatoikina, A. I. ; Zhuravlev, S. S. ; German, V. N.</creator><creatorcontrib>Mil’chenko, D. V. ; Gubachev, V. A. ; Andreevskikh, L. A. ; Vakhmistrov, S. A. ; Mikhailov, A. L. ; Burnashov, V. A. ; Khaldeev, E. V. ; Pyatoikina, A. I. ; Zhuravlev, S. S. ; German, V. N.</creatorcontrib><description>This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosive vapor on the substrate. Under these conditions, it has been shown that nanostructured polycrystalline layers of explosives containing a large number of micro-defects (pores and dislocations) are formed. In the explosive transformation in the deposited explosive layer, nano- and submicron-sized defects of the structure act as hot spots. The result is a significant reduction in the critical detonation dimensions. The nanostructured explosives studied by the authors are able to detonate at a layer thickness of 20–100 µm. Furthermore, their detonation velocity is substantially less dependent on the layer thickness than that of charges of the same explosives made by traditional technologies. Nanostructured explosives can also be used as components of explosive compositions with improved detonability.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508215010086</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Physical Chemistry ; Physics ; Physics and Astronomy ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2015, Vol.51 (1), p.80-85</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-ddf3348f9ce8a53489779f9629a30ea644f580cb4070e29eb856313f29a269263</citedby><cites>FETCH-LOGICAL-c288t-ddf3348f9ce8a53489779f9629a30ea644f580cb4070e29eb856313f29a269263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508215010086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508215010086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mil’chenko, D. V.</creatorcontrib><creatorcontrib>Gubachev, V. A.</creatorcontrib><creatorcontrib>Andreevskikh, L. A.</creatorcontrib><creatorcontrib>Vakhmistrov, S. A.</creatorcontrib><creatorcontrib>Mikhailov, A. L.</creatorcontrib><creatorcontrib>Burnashov, V. A.</creatorcontrib><creatorcontrib>Khaldeev, E. V.</creatorcontrib><creatorcontrib>Pyatoikina, A. I.</creatorcontrib><creatorcontrib>Zhuravlev, S. S.</creatorcontrib><creatorcontrib>German, V. N.</creatorcontrib><title>Nanostructured explosives produced by vapor deposition: Structure and explosive properties</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosive vapor on the substrate. Under these conditions, it has been shown that nanostructured polycrystalline layers of explosives containing a large number of micro-defects (pores and dislocations) are formed. In the explosive transformation in the deposited explosive layer, nano- and submicron-sized defects of the structure act as hot spots. The result is a significant reduction in the critical detonation dimensions. The nanostructured explosives studied by the authors are able to detonate at a layer thickness of 20–100 µm. Furthermore, their detonation velocity is substantially less dependent on the layer thickness than that of charges of the same explosives made by traditional technologies. Nanostructured explosives can also be used as components of explosive compositions with improved detonability.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQhxdRsFYfwFteIDr7N7vepKgVih6qFy9hk8xKSs2G3aTYt3dDFQTB0_yYb75hGEIuKVxRysX1GoCCBM2oTAG0OiIzKgueay7kMZlNOJ_4KTmLcQMAjAk1I29PtvNxCGM9jAGbDD_7rY_tDmPWB9-MdepV-2xnex-yBvvEhtZ3N9n6x8ls90ubrB7D0GI8JyfObiNefNc5eb2_e1ks89Xzw-PidpXXTOshbxrHudDO1KitTMkUhXFGMWM5oFVCOKmhrgQUgMxgpaXilLvEmTJM8Tmhh7118DEGdGUf2g8b9iWFcnpO-ec5yWEHJ6bZ7h1DufFj6NKZ_0hfg6Vnrg</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Mil’chenko, D. V.</creator><creator>Gubachev, V. A.</creator><creator>Andreevskikh, L. A.</creator><creator>Vakhmistrov, S. A.</creator><creator>Mikhailov, A. L.</creator><creator>Burnashov, V. A.</creator><creator>Khaldeev, E. V.</creator><creator>Pyatoikina, A. I.</creator><creator>Zhuravlev, S. S.</creator><creator>German, V. N.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Nanostructured explosives produced by vapor deposition: Structure and explosive properties</title><author>Mil’chenko, D. V. ; Gubachev, V. A. ; Andreevskikh, L. A. ; Vakhmistrov, S. A. ; Mikhailov, A. L. ; Burnashov, V. A. ; Khaldeev, E. V. ; Pyatoikina, A. I. ; Zhuravlev, S. S. ; German, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-ddf3348f9ce8a53489779f9629a30ea644f580cb4070e29eb856313f29a269263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mil’chenko, D. V.</creatorcontrib><creatorcontrib>Gubachev, V. A.</creatorcontrib><creatorcontrib>Andreevskikh, L. A.</creatorcontrib><creatorcontrib>Vakhmistrov, S. A.</creatorcontrib><creatorcontrib>Mikhailov, A. L.</creatorcontrib><creatorcontrib>Burnashov, V. A.</creatorcontrib><creatorcontrib>Khaldeev, E. V.</creatorcontrib><creatorcontrib>Pyatoikina, A. I.</creatorcontrib><creatorcontrib>Zhuravlev, S. S.</creatorcontrib><creatorcontrib>German, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mil’chenko, D. V.</au><au>Gubachev, V. A.</au><au>Andreevskikh, L. A.</au><au>Vakhmistrov, S. A.</au><au>Mikhailov, A. L.</au><au>Burnashov, V. A.</au><au>Khaldeev, E. V.</au><au>Pyatoikina, A. I.</au><au>Zhuravlev, S. S.</au><au>German, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured explosives produced by vapor deposition: Structure and explosive properties</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2015</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>80</spage><epage>85</epage><pages>80-85</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosive vapor on the substrate. Under these conditions, it has been shown that nanostructured polycrystalline layers of explosives containing a large number of micro-defects (pores and dislocations) are formed. In the explosive transformation in the deposited explosive layer, nano- and submicron-sized defects of the structure act as hot spots. The result is a significant reduction in the critical detonation dimensions. The nanostructured explosives studied by the authors are able to detonate at a layer thickness of 20–100 µm. Furthermore, their detonation velocity is substantially less dependent on the layer thickness than that of charges of the same explosives made by traditional technologies. Nanostructured explosives can also be used as components of explosive compositions with improved detonability.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508215010086</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-5082 |
ispartof | Combustion, explosion, and shock waves, 2015, Vol.51 (1), p.80-85 |
issn | 0010-5082 1573-8345 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S0010508215010086 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical and Continuum Physics Classical Mechanics Control Dynamical Systems Engineering Physical Chemistry Physics Physics and Astronomy Vibration |
title | Nanostructured explosives produced by vapor deposition: Structure and explosive properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20explosives%20produced%20by%20vapor%20deposition:%20Structure%20and%20explosive%20properties&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Mil%E2%80%99chenko,%20D.%20V.&rft.date=2015&rft.volume=51&rft.issue=1&rft.spage=80&rft.epage=85&rft.pages=80-85&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508215010086&rft_dat=%3Ccrossref_sprin%3E10_1134_S0010508215010086%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |