Nanostructured explosives produced by vapor deposition: Structure and explosive properties

This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion, explosion, and shock waves explosion, and shock waves, 2015, Vol.51 (1), p.80-85
Hauptverfasser: Mil’chenko, D. V., Gubachev, V. A., Andreevskikh, L. A., Vakhmistrov, S. A., Mikhailov, A. L., Burnashov, V. A., Khaldeev, E. V., Pyatoikina, A. I., Zhuravlev, S. S., German, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 80
container_title Combustion, explosion, and shock waves
container_volume 51
creator Mil’chenko, D. V.
Gubachev, V. A.
Andreevskikh, L. A.
Vakhmistrov, S. A.
Mikhailov, A. L.
Burnashov, V. A.
Khaldeev, E. V.
Pyatoikina, A. I.
Zhuravlev, S. S.
German, V. N.
description This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosive vapor on the substrate. Under these conditions, it has been shown that nanostructured polycrystalline layers of explosives containing a large number of micro-defects (pores and dislocations) are formed. In the explosive transformation in the deposited explosive layer, nano- and submicron-sized defects of the structure act as hot spots. The result is a significant reduction in the critical detonation dimensions. The nanostructured explosives studied by the authors are able to detonate at a layer thickness of 20–100 µm. Furthermore, their detonation velocity is substantially less dependent on the layer thickness than that of charges of the same explosives made by traditional technologies. Nanostructured explosives can also be used as components of explosive compositions with improved detonability.
doi_str_mv 10.1134/S0010508215010086
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0010508215010086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0010508215010086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-ddf3348f9ce8a53489779f9629a30ea644f580cb4070e29eb856313f29a269263</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQhxdRsFYfwFteIDr7N7vepKgVih6qFy9hk8xKSs2G3aTYt3dDFQTB0_yYb75hGEIuKVxRysX1GoCCBM2oTAG0OiIzKgueay7kMZlNOJ_4KTmLcQMAjAk1I29PtvNxCGM9jAGbDD_7rY_tDmPWB9-MdepV-2xnex-yBvvEhtZ3N9n6x8ls90ubrB7D0GI8JyfObiNefNc5eb2_e1ks89Xzw-PidpXXTOshbxrHudDO1KitTMkUhXFGMWM5oFVCOKmhrgQUgMxgpaXilLvEmTJM8Tmhh7118DEGdGUf2g8b9iWFcnpO-ec5yWEHJ6bZ7h1DufFj6NKZ_0hfg6Vnrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanostructured explosives produced by vapor deposition: Structure and explosive properties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mil’chenko, D. V. ; Gubachev, V. A. ; Andreevskikh, L. A. ; Vakhmistrov, S. A. ; Mikhailov, A. L. ; Burnashov, V. A. ; Khaldeev, E. V. ; Pyatoikina, A. I. ; Zhuravlev, S. S. ; German, V. N.</creator><creatorcontrib>Mil’chenko, D. V. ; Gubachev, V. A. ; Andreevskikh, L. A. ; Vakhmistrov, S. A. ; Mikhailov, A. L. ; Burnashov, V. A. ; Khaldeev, E. V. ; Pyatoikina, A. I. ; Zhuravlev, S. S. ; German, V. N.</creatorcontrib><description>This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosive vapor on the substrate. Under these conditions, it has been shown that nanostructured polycrystalline layers of explosives containing a large number of micro-defects (pores and dislocations) are formed. In the explosive transformation in the deposited explosive layer, nano- and submicron-sized defects of the structure act as hot spots. The result is a significant reduction in the critical detonation dimensions. The nanostructured explosives studied by the authors are able to detonate at a layer thickness of 20–100 µm. Furthermore, their detonation velocity is substantially less dependent on the layer thickness than that of charges of the same explosives made by traditional technologies. Nanostructured explosives can also be used as components of explosive compositions with improved detonability.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508215010086</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Physical Chemistry ; Physics ; Physics and Astronomy ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2015, Vol.51 (1), p.80-85</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-ddf3348f9ce8a53489779f9629a30ea644f580cb4070e29eb856313f29a269263</citedby><cites>FETCH-LOGICAL-c288t-ddf3348f9ce8a53489779f9629a30ea644f580cb4070e29eb856313f29a269263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508215010086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508215010086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mil’chenko, D. V.</creatorcontrib><creatorcontrib>Gubachev, V. A.</creatorcontrib><creatorcontrib>Andreevskikh, L. A.</creatorcontrib><creatorcontrib>Vakhmistrov, S. A.</creatorcontrib><creatorcontrib>Mikhailov, A. L.</creatorcontrib><creatorcontrib>Burnashov, V. A.</creatorcontrib><creatorcontrib>Khaldeev, E. V.</creatorcontrib><creatorcontrib>Pyatoikina, A. I.</creatorcontrib><creatorcontrib>Zhuravlev, S. S.</creatorcontrib><creatorcontrib>German, V. N.</creatorcontrib><title>Nanostructured explosives produced by vapor deposition: Structure and explosive properties</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosive vapor on the substrate. Under these conditions, it has been shown that nanostructured polycrystalline layers of explosives containing a large number of micro-defects (pores and dislocations) are formed. In the explosive transformation in the deposited explosive layer, nano- and submicron-sized defects of the structure act as hot spots. The result is a significant reduction in the critical detonation dimensions. The nanostructured explosives studied by the authors are able to detonate at a layer thickness of 20–100 µm. Furthermore, their detonation velocity is substantially less dependent on the layer thickness than that of charges of the same explosives made by traditional technologies. Nanostructured explosives can also be used as components of explosive compositions with improved detonability.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQhxdRsFYfwFteIDr7N7vepKgVih6qFy9hk8xKSs2G3aTYt3dDFQTB0_yYb75hGEIuKVxRysX1GoCCBM2oTAG0OiIzKgueay7kMZlNOJ_4KTmLcQMAjAk1I29PtvNxCGM9jAGbDD_7rY_tDmPWB9-MdepV-2xnex-yBvvEhtZ3N9n6x8ls90ubrB7D0GI8JyfObiNefNc5eb2_e1ks89Xzw-PidpXXTOshbxrHudDO1KitTMkUhXFGMWM5oFVCOKmhrgQUgMxgpaXilLvEmTJM8Tmhh7118DEGdGUf2g8b9iWFcnpO-ec5yWEHJ6bZ7h1DufFj6NKZ_0hfg6Vnrg</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Mil’chenko, D. V.</creator><creator>Gubachev, V. A.</creator><creator>Andreevskikh, L. A.</creator><creator>Vakhmistrov, S. A.</creator><creator>Mikhailov, A. L.</creator><creator>Burnashov, V. A.</creator><creator>Khaldeev, E. V.</creator><creator>Pyatoikina, A. I.</creator><creator>Zhuravlev, S. S.</creator><creator>German, V. N.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Nanostructured explosives produced by vapor deposition: Structure and explosive properties</title><author>Mil’chenko, D. V. ; Gubachev, V. A. ; Andreevskikh, L. A. ; Vakhmistrov, S. A. ; Mikhailov, A. L. ; Burnashov, V. A. ; Khaldeev, E. V. ; Pyatoikina, A. I. ; Zhuravlev, S. S. ; German, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-ddf3348f9ce8a53489779f9629a30ea644f580cb4070e29eb856313f29a269263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mil’chenko, D. V.</creatorcontrib><creatorcontrib>Gubachev, V. A.</creatorcontrib><creatorcontrib>Andreevskikh, L. A.</creatorcontrib><creatorcontrib>Vakhmistrov, S. A.</creatorcontrib><creatorcontrib>Mikhailov, A. L.</creatorcontrib><creatorcontrib>Burnashov, V. A.</creatorcontrib><creatorcontrib>Khaldeev, E. V.</creatorcontrib><creatorcontrib>Pyatoikina, A. I.</creatorcontrib><creatorcontrib>Zhuravlev, S. S.</creatorcontrib><creatorcontrib>German, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mil’chenko, D. V.</au><au>Gubachev, V. A.</au><au>Andreevskikh, L. A.</au><au>Vakhmistrov, S. A.</au><au>Mikhailov, A. L.</au><au>Burnashov, V. A.</au><au>Khaldeev, E. V.</au><au>Pyatoikina, A. I.</au><au>Zhuravlev, S. S.</au><au>German, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured explosives produced by vapor deposition: Structure and explosive properties</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2015</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>80</spage><epage>85</epage><pages>80-85</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>This paper generalizes the experimental data of the authors on the production and properties of thin-layer nanostructured explosives obtained by thermal vacuum sublimation. The method involves sublimation of explosive under heating in high vacuum, followed by deposition (condensation) of the explosive vapor on the substrate. Under these conditions, it has been shown that nanostructured polycrystalline layers of explosives containing a large number of micro-defects (pores and dislocations) are formed. In the explosive transformation in the deposited explosive layer, nano- and submicron-sized defects of the structure act as hot spots. The result is a significant reduction in the critical detonation dimensions. The nanostructured explosives studied by the authors are able to detonate at a layer thickness of 20–100 µm. Furthermore, their detonation velocity is substantially less dependent on the layer thickness than that of charges of the same explosives made by traditional technologies. Nanostructured explosives can also be used as components of explosive compositions with improved detonability.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508215010086</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-5082
ispartof Combustion, explosion, and shock waves, 2015, Vol.51 (1), p.80-85
issn 0010-5082
1573-8345
language eng
recordid cdi_crossref_primary_10_1134_S0010508215010086
source SpringerLink Journals - AutoHoldings
subjects Classical and Continuum Physics
Classical Mechanics
Control
Dynamical Systems
Engineering
Physical Chemistry
Physics
Physics and Astronomy
Vibration
title Nanostructured explosives produced by vapor deposition: Structure and explosive properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20explosives%20produced%20by%20vapor%20deposition:%20Structure%20and%20explosive%20properties&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Mil%E2%80%99chenko,%20D.%20V.&rft.date=2015&rft.volume=51&rft.issue=1&rft.spage=80&rft.epage=85&rft.pages=80-85&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508215010086&rft_dat=%3Ccrossref_sprin%3E10_1134_S0010508215010086%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true