Attracting ellipsoids and synthesis of oscillatory regimes

An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces R 2 k ⊂ R 2 n w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2009-08, Vol.70 (8), p.1301-1308
Hauptverfasser: Gorobtsov, A. S., Grigor’eva, O. E., Ryzhov, E. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1308
container_issue 8
container_start_page 1301
container_title Automation and remote control
container_volume 70
creator Gorobtsov, A. S.
Grigor’eva, O. E.
Ryzhov, E. N.
description An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces R 2 k ⊂ R 2 n with simultaneous oscillation damping on Cartesian products R 2 n −2 k .
doi_str_mv 10.1134/S0005117909080037
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0005117909080037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0005117909080037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-c5421c04c17f40c381a4d82817410313bcfa796ece7ea52f1de0918fe53585613</originalsourceid><addsrcrecordid>eNp9j81OwzAQhC0EEqHwANz8AoFd_yQOt6oCilSJA3COjGMHV2lSecMhb0-ickPiNIeZbzTD2C3CHaJU928AoBHLCiowALI8YxkWYHIJUpyzbLHzxb9kV0R7AEQQMmMP63FM1o2xb7nvunikITbEbd9wmvrxy1MkPgQ-kItdZ8chTTz5Nh48XbOLYDvyN7-6Yh9Pj--bbb57fX7ZrHe5E8aMudNKoAPlsAwKnDRoVWOEwVIhSJSfLtiyKrzzpbdaBGw8VGiC11IbXaBcMTz1ujQQJR_qY4oHm6YaoV7O13_Oz4w4MTRn-9anej98p36e-Q_0A9acWx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Attracting ellipsoids and synthesis of oscillatory regimes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gorobtsov, A. S. ; Grigor’eva, O. E. ; Ryzhov, E. N.</creator><creatorcontrib>Gorobtsov, A. S. ; Grigor’eva, O. E. ; Ryzhov, E. N.</creatorcontrib><description>An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces R 2 k ⊂ R 2 n with simultaneous oscillation damping on Cartesian products R 2 n −2 k .</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117909080037</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Determinate Systems ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Robotics ; Systems Theory</subject><ispartof>Automation and remote control, 2009-08, Vol.70 (8), p.1301-1308</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-c5421c04c17f40c381a4d82817410313bcfa796ece7ea52f1de0918fe53585613</citedby><cites>FETCH-LOGICAL-c288t-c5421c04c17f40c381a4d82817410313bcfa796ece7ea52f1de0918fe53585613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117909080037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117909080037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Gorobtsov, A. S.</creatorcontrib><creatorcontrib>Grigor’eva, O. E.</creatorcontrib><creatorcontrib>Ryzhov, E. N.</creatorcontrib><title>Attracting ellipsoids and synthesis of oscillatory regimes</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces R 2 k ⊂ R 2 n with simultaneous oscillation damping on Cartesian products R 2 n −2 k .</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Determinate Systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Systems Theory</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9j81OwzAQhC0EEqHwANz8AoFd_yQOt6oCilSJA3COjGMHV2lSecMhb0-ickPiNIeZbzTD2C3CHaJU928AoBHLCiowALI8YxkWYHIJUpyzbLHzxb9kV0R7AEQQMmMP63FM1o2xb7nvunikITbEbd9wmvrxy1MkPgQ-kItdZ8chTTz5Nh48XbOLYDvyN7-6Yh9Pj--bbb57fX7ZrHe5E8aMudNKoAPlsAwKnDRoVWOEwVIhSJSfLtiyKrzzpbdaBGw8VGiC11IbXaBcMTz1ujQQJR_qY4oHm6YaoV7O13_Oz4w4MTRn-9anej98p36e-Q_0A9acWx8</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Gorobtsov, A. S.</creator><creator>Grigor’eva, O. E.</creator><creator>Ryzhov, E. N.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090801</creationdate><title>Attracting ellipsoids and synthesis of oscillatory regimes</title><author>Gorobtsov, A. S. ; Grigor’eva, O. E. ; Ryzhov, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-c5421c04c17f40c381a4d82817410313bcfa796ece7ea52f1de0918fe53585613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Determinate Systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorobtsov, A. S.</creatorcontrib><creatorcontrib>Grigor’eva, O. E.</creatorcontrib><creatorcontrib>Ryzhov, E. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorobtsov, A. S.</au><au>Grigor’eva, O. E.</au><au>Ryzhov, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attracting ellipsoids and synthesis of oscillatory regimes</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>70</volume><issue>8</issue><spage>1301</spage><epage>1308</epage><pages>1301-1308</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces R 2 k ⊂ R 2 n with simultaneous oscillation damping on Cartesian products R 2 n −2 k .</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0005117909080037</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2009-08, Vol.70 (8), p.1301-1308
issn 0005-1179
1608-3032
language eng
recordid cdi_crossref_primary_10_1134_S0005117909080037
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Determinate Systems
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Robotics
Systems Theory
title Attracting ellipsoids and synthesis of oscillatory regimes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attracting%20ellipsoids%20and%20synthesis%20of%20oscillatory%20regimes&rft.jtitle=Automation%20and%20remote%20control&rft.au=Gorobtsov,%20A.%20S.&rft.date=2009-08-01&rft.volume=70&rft.issue=8&rft.spage=1301&rft.epage=1308&rft.pages=1301-1308&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117909080037&rft_dat=%3Ccrossref_sprin%3E10_1134_S0005117909080037%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true