Attracting ellipsoids and synthesis of oscillatory regimes
An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces R 2 k ⊂ R 2 n w...
Gespeichert in:
Veröffentlicht in: | Automation and remote control 2009-08, Vol.70 (8), p.1301-1308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1308 |
---|---|
container_issue | 8 |
container_start_page | 1301 |
container_title | Automation and remote control |
container_volume | 70 |
creator | Gorobtsov, A. S. Grigor’eva, O. E. Ryzhov, E. N. |
description | An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces
R
2
k
⊂
R
2
n
with simultaneous oscillation damping on Cartesian products
R
2
n
−2
k
. |
doi_str_mv | 10.1134/S0005117909080037 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0005117909080037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0005117909080037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-c5421c04c17f40c381a4d82817410313bcfa796ece7ea52f1de0918fe53585613</originalsourceid><addsrcrecordid>eNp9j81OwzAQhC0EEqHwANz8AoFd_yQOt6oCilSJA3COjGMHV2lSecMhb0-ickPiNIeZbzTD2C3CHaJU928AoBHLCiowALI8YxkWYHIJUpyzbLHzxb9kV0R7AEQQMmMP63FM1o2xb7nvunikITbEbd9wmvrxy1MkPgQ-kItdZ8chTTz5Nh48XbOLYDvyN7-6Yh9Pj--bbb57fX7ZrHe5E8aMudNKoAPlsAwKnDRoVWOEwVIhSJSfLtiyKrzzpbdaBGw8VGiC11IbXaBcMTz1ujQQJR_qY4oHm6YaoV7O13_Oz4w4MTRn-9anej98p36e-Q_0A9acWx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Attracting ellipsoids and synthesis of oscillatory regimes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gorobtsov, A. S. ; Grigor’eva, O. E. ; Ryzhov, E. N.</creator><creatorcontrib>Gorobtsov, A. S. ; Grigor’eva, O. E. ; Ryzhov, E. N.</creatorcontrib><description>An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces
R
2
k
⊂
R
2
n
with simultaneous oscillation damping on Cartesian products
R
2
n
−2
k
.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117909080037</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Determinate Systems ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Robotics ; Systems Theory</subject><ispartof>Automation and remote control, 2009-08, Vol.70 (8), p.1301-1308</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-c5421c04c17f40c381a4d82817410313bcfa796ece7ea52f1de0918fe53585613</citedby><cites>FETCH-LOGICAL-c288t-c5421c04c17f40c381a4d82817410313bcfa796ece7ea52f1de0918fe53585613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117909080037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117909080037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Gorobtsov, A. S.</creatorcontrib><creatorcontrib>Grigor’eva, O. E.</creatorcontrib><creatorcontrib>Ryzhov, E. N.</creatorcontrib><title>Attracting ellipsoids and synthesis of oscillatory regimes</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces
R
2
k
⊂
R
2
n
with simultaneous oscillation damping on Cartesian products
R
2
n
−2
k
.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Determinate Systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Systems Theory</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9j81OwzAQhC0EEqHwANz8AoFd_yQOt6oCilSJA3COjGMHV2lSecMhb0-ickPiNIeZbzTD2C3CHaJU928AoBHLCiowALI8YxkWYHIJUpyzbLHzxb9kV0R7AEQQMmMP63FM1o2xb7nvunikITbEbd9wmvrxy1MkPgQ-kItdZ8chTTz5Nh48XbOLYDvyN7-6Yh9Pj--bbb57fX7ZrHe5E8aMudNKoAPlsAwKnDRoVWOEwVIhSJSfLtiyKrzzpbdaBGw8VGiC11IbXaBcMTz1ujQQJR_qY4oHm6YaoV7O13_Oz4w4MTRn-9anej98p36e-Q_0A9acWx8</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Gorobtsov, A. S.</creator><creator>Grigor’eva, O. E.</creator><creator>Ryzhov, E. N.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090801</creationdate><title>Attracting ellipsoids and synthesis of oscillatory regimes</title><author>Gorobtsov, A. S. ; Grigor’eva, O. E. ; Ryzhov, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-c5421c04c17f40c381a4d82817410313bcfa796ece7ea52f1de0918fe53585613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Determinate Systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorobtsov, A. S.</creatorcontrib><creatorcontrib>Grigor’eva, O. E.</creatorcontrib><creatorcontrib>Ryzhov, E. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorobtsov, A. S.</au><au>Grigor’eva, O. E.</au><au>Ryzhov, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attracting ellipsoids and synthesis of oscillatory regimes</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>70</volume><issue>8</issue><spage>1301</spage><epage>1308</epage><pages>1301-1308</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>An approach to stabilization of nonlinear oscillations in multidimensional spaces is proposed on the basis of the V.I. Zubov’s stability theory for invariant sets. As a special case, the derived controls make it possible to excite self-oscillating regimes in specified state subspaces
R
2
k
⊂
R
2
n
with simultaneous oscillation damping on Cartesian products
R
2
n
−2
k
.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0005117909080037</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1179 |
ispartof | Automation and remote control, 2009-08, Vol.70 (8), p.1301-1308 |
issn | 0005-1179 1608-3032 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S0005117909080037 |
source | SpringerLink Journals - AutoHoldings |
subjects | CAE) and Design Calculus of Variations and Optimal Control Optimization Computer-Aided Engineering (CAD Control Determinate Systems Mathematics Mathematics and Statistics Mechanical Engineering Mechatronics Robotics Systems Theory |
title | Attracting ellipsoids and synthesis of oscillatory regimes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attracting%20ellipsoids%20and%20synthesis%20of%20oscillatory%20regimes&rft.jtitle=Automation%20and%20remote%20control&rft.au=Gorobtsov,%20A.%20S.&rft.date=2009-08-01&rft.volume=70&rft.issue=8&rft.spage=1301&rft.epage=1308&rft.pages=1301-1308&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117909080037&rft_dat=%3Ccrossref_sprin%3E10_1134_S0005117909080037%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |