A Refinement of the Two-Radius Theorem on the Bessel–Kingman Hypergroup

In the present paper, we study an equation of the form where , is the generalized Bessel translation operator, and is an even function locally integrable with respect to the measure on the interval . A description of the solutions of this equation in the form of series in special functions is obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2024-08, Vol.116 (1-2), p.223-237
Hauptverfasser: Volchkov, Vit. V., Krasnoschekikh, G. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 1-2
container_start_page 223
container_title Mathematical Notes
container_volume 116
creator Volchkov, Vit. V.
Krasnoschekikh, G. V.
description In the present paper, we study an equation of the form where , is the generalized Bessel translation operator, and is an even function locally integrable with respect to the measure on the interval . A description of the solutions of this equation in the form of series in special functions is obtained. Based on this result, we completely study the existence of a nonzero solution of a system of two such equations.
doi_str_mv 10.1134/S0001434624070174
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0001434624070174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0001434624070174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-fbbb761e4bcd34a28ab3b94ed8980cadd99cd02024e18bc0764c1c517a0ae3033</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4C0vsDqzSTe7x1rUFgtCreclyc62W7pJSVqkN9_BN-yTuLXeBE_D8P3fMPyM3SLcIQp5_wYAKIXMUgkKUMkz1sOBEkmeq-yc9Y44OfJLdhXjqtswQ-ixyZDPqG4cteS23Nd8uyQ-__DJTFfNLvL5knyglnv3Qx4oRlofPr9eGrdotePj_YbCIvjd5ppd1Hod6eZ39tn70-N8NE6mr8-T0XCaWFSwTWpjjMqQpLGVkDrNtRGmkFTlRQ5WV1VR2ApSSCVhbiyoTFq0A1QaNAkQos_wdNcGH2OgutyEptVhXyKUxy7KP110TnpyYpd1Cwrlyu-C6978R_oGq39hVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Refinement of the Two-Radius Theorem on the Bessel–Kingman Hypergroup</title><source>SpringerNature Journals</source><creator>Volchkov, Vit. V. ; Krasnoschekikh, G. V.</creator><creatorcontrib>Volchkov, Vit. V. ; Krasnoschekikh, G. V.</creatorcontrib><description>In the present paper, we study an equation of the form where , is the generalized Bessel translation operator, and is an even function locally integrable with respect to the measure on the interval . A description of the solutions of this equation in the form of series in special functions is obtained. Based on this result, we completely study the existence of a nonzero solution of a system of two such equations.</description><identifier>ISSN: 0001-4346</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434624070174</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematical Notes, 2024-08, Vol.116 (1-2), p.223-237</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-fbbb761e4bcd34a28ab3b94ed8980cadd99cd02024e18bc0764c1c517a0ae3033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434624070174$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434624070174$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Volchkov, Vit. V.</creatorcontrib><creatorcontrib>Krasnoschekikh, G. V.</creatorcontrib><title>A Refinement of the Two-Radius Theorem on the Bessel–Kingman Hypergroup</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>In the present paper, we study an equation of the form where , is the generalized Bessel translation operator, and is an even function locally integrable with respect to the measure on the interval . A description of the solutions of this equation in the form of series in special functions is obtained. Based on this result, we completely study the existence of a nonzero solution of a system of two such equations.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0001-4346</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4C0vsDqzSTe7x1rUFgtCreclyc62W7pJSVqkN9_BN-yTuLXeBE_D8P3fMPyM3SLcIQp5_wYAKIXMUgkKUMkz1sOBEkmeq-yc9Y44OfJLdhXjqtswQ-ixyZDPqG4cteS23Nd8uyQ-__DJTFfNLvL5knyglnv3Qx4oRlofPr9eGrdotePj_YbCIvjd5ppd1Hod6eZ39tn70-N8NE6mr8-T0XCaWFSwTWpjjMqQpLGVkDrNtRGmkFTlRQ5WV1VR2ApSSCVhbiyoTFq0A1QaNAkQos_wdNcGH2OgutyEptVhXyKUxy7KP110TnpyYpd1Cwrlyu-C6978R_oGq39hVQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Volchkov, Vit. V.</creator><creator>Krasnoschekikh, G. V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>A Refinement of the Two-Radius Theorem on the Bessel–Kingman Hypergroup</title><author>Volchkov, Vit. V. ; Krasnoschekikh, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-fbbb761e4bcd34a28ab3b94ed8980cadd99cd02024e18bc0764c1c517a0ae3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volchkov, Vit. V.</creatorcontrib><creatorcontrib>Krasnoschekikh, G. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volchkov, Vit. V.</au><au>Krasnoschekikh, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Refinement of the Two-Radius Theorem on the Bessel–Kingman Hypergroup</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>116</volume><issue>1-2</issue><spage>223</spage><epage>237</epage><pages>223-237</pages><issn>0001-4346</issn><eissn>1573-8876</eissn><abstract>In the present paper, we study an equation of the form where , is the generalized Bessel translation operator, and is an even function locally integrable with respect to the measure on the interval . A description of the solutions of this equation in the form of series in special functions is obtained. Based on this result, we completely study the existence of a nonzero solution of a system of two such equations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434624070174</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2024-08, Vol.116 (1-2), p.223-237
issn 0001-4346
1573-8876
language eng
recordid cdi_crossref_primary_10_1134_S0001434624070174
source SpringerNature Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Mathematics
Mathematics and Statistics
title A Refinement of the Two-Radius Theorem on the Bessel–Kingman Hypergroup
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Refinement%20of%20the%20Two-Radius%20Theorem%20on%20the%20Bessel%E2%80%93Kingman%20Hypergroup&rft.jtitle=Mathematical%20Notes&rft.au=Volchkov,%20Vit.%20V.&rft.date=2024-08-01&rft.volume=116&rft.issue=1-2&rft.spage=223&rft.epage=237&rft.pages=223-237&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434624070174&rft_dat=%3Ccrossref_sprin%3E10_1134_S0001434624070174%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true