The Hopfian property of n-periodic products of groups
Let H be a subgroup of a group G . A normal subgroup N H of H is said to be inheritably normal if there is a normal subgroup N G of G such that N H = N G ∩ H . It is proved in the paper that a subgroup of a factor G i of the n -periodic product Π i ∈ I n G i with nontrivial factors G i is an inherit...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2014-03, Vol.95 (3-4), p.443-449 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449 |
---|---|
container_issue | 3-4 |
container_start_page | 443 |
container_title | Mathematical Notes |
container_volume | 95 |
creator | Adian, S. I. Atabekyan, V. S. |
description | Let
H
be a subgroup of a group
G
. A normal subgroup
N
H
of
H
is said to be
inheritably normal
if there is a normal subgroup
N
G
of
G
such that
N
H
=
N
G
∩
H
. It is proved in the paper that a subgroup
of a factor
G
i
of the
n
-periodic product Π
i
∈
I
n
G
i
with nontrivial factors
G
i
is an inheritably normal subgroup if and only if
contains the subgroup
G
i
n
. It is also proved that for odd
n
≥ 665 every nontrivial normal subgroup in a given
n
-periodic product
G
= Π
i
∈
I
n
G
i
contains the subgroup
G
n
. It follows that almost all
n
-periodic products
G
=
G
1
*
n
G
2
are Hopfian, i.e., they are not isomorphic to any of their proper quotient groups. This allows one to construct nonsimple and not residually finite Hopfian groups of bounded exponents. |
doi_str_mv | 10.1134/S000143461403016X |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S000143461403016X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S000143461403016X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-921de0ada27ff95aef9e1affb3a3fce100e7c0b481df7ed954a8555a85a579ba3</originalsourceid><addsrcrecordid>eNp9T8tOwzAQtBBIhMIHcMsPGHZjO06OqAKKVIkDReIWOX6UVBBHdnLo32Or3JC47GNmZ7RDyC3CHSLj928AgJzxGjkwwPrjjBQoJKNNI-tzUmSaZv6SXMV4SBvWCAURu09bbvzkBjWWU_CTDfOx9K4caRoHbwadYbPoOWZ4H_wyxWty4dRXtDe_fUXenx536w3dvj6_rB-2VDOGM20rNBaUUZV0rhXKutaicq5nijltEcBKDT1v0DhpTSu4aoQQqSgh216xFcGTrw4-xmBdN4XhW4Vjh9Dl3N2f3ElTnTQx3Y57G7qDX8KY3vxH9AMvjlqr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Hopfian property of n-periodic products of groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Adian, S. I. ; Atabekyan, V. S.</creator><creatorcontrib>Adian, S. I. ; Atabekyan, V. S.</creatorcontrib><description>Let
H
be a subgroup of a group
G
. A normal subgroup
N
H
of
H
is said to be
inheritably normal
if there is a normal subgroup
N
G
of
G
such that
N
H
=
N
G
∩
H
. It is proved in the paper that a subgroup
of a factor
G
i
of the
n
-periodic product Π
i
∈
I
n
G
i
with nontrivial factors
G
i
is an inheritably normal subgroup if and only if
contains the subgroup
G
i
n
. It is also proved that for odd
n
≥ 665 every nontrivial normal subgroup in a given
n
-periodic product
G
= Π
i
∈
I
n
G
i
contains the subgroup
G
n
. It follows that almost all
n
-periodic products
G
=
G
1
*
n
G
2
are Hopfian, i.e., they are not isomorphic to any of their proper quotient groups. This allows one to construct nonsimple and not residually finite Hopfian groups of bounded exponents.</description><identifier>ISSN: 0001-4346</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S000143461403016X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematical Notes, 2014-03, Vol.95 (3-4), p.443-449</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-921de0ada27ff95aef9e1affb3a3fce100e7c0b481df7ed954a8555a85a579ba3</citedby><cites>FETCH-LOGICAL-c331t-921de0ada27ff95aef9e1affb3a3fce100e7c0b481df7ed954a8555a85a579ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S000143461403016X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S000143461403016X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Adian, S. I.</creatorcontrib><creatorcontrib>Atabekyan, V. S.</creatorcontrib><title>The Hopfian property of n-periodic products of groups</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>Let
H
be a subgroup of a group
G
. A normal subgroup
N
H
of
H
is said to be
inheritably normal
if there is a normal subgroup
N
G
of
G
such that
N
H
=
N
G
∩
H
. It is proved in the paper that a subgroup
of a factor
G
i
of the
n
-periodic product Π
i
∈
I
n
G
i
with nontrivial factors
G
i
is an inheritably normal subgroup if and only if
contains the subgroup
G
i
n
. It is also proved that for odd
n
≥ 665 every nontrivial normal subgroup in a given
n
-periodic product
G
= Π
i
∈
I
n
G
i
contains the subgroup
G
n
. It follows that almost all
n
-periodic products
G
=
G
1
*
n
G
2
are Hopfian, i.e., they are not isomorphic to any of their proper quotient groups. This allows one to construct nonsimple and not residually finite Hopfian groups of bounded exponents.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0001-4346</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9T8tOwzAQtBBIhMIHcMsPGHZjO06OqAKKVIkDReIWOX6UVBBHdnLo32Or3JC47GNmZ7RDyC3CHSLj928AgJzxGjkwwPrjjBQoJKNNI-tzUmSaZv6SXMV4SBvWCAURu09bbvzkBjWWU_CTDfOx9K4caRoHbwadYbPoOWZ4H_wyxWty4dRXtDe_fUXenx536w3dvj6_rB-2VDOGM20rNBaUUZV0rhXKutaicq5nijltEcBKDT1v0DhpTSu4aoQQqSgh216xFcGTrw4-xmBdN4XhW4Vjh9Dl3N2f3ElTnTQx3Y57G7qDX8KY3vxH9AMvjlqr</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Adian, S. I.</creator><creator>Atabekyan, V. S.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140301</creationdate><title>The Hopfian property of n-periodic products of groups</title><author>Adian, S. I. ; Atabekyan, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-921de0ada27ff95aef9e1affb3a3fce100e7c0b481df7ed954a8555a85a579ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adian, S. I.</creatorcontrib><creatorcontrib>Atabekyan, V. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adian, S. I.</au><au>Atabekyan, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hopfian property of n-periodic products of groups</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>95</volume><issue>3-4</issue><spage>443</spage><epage>449</epage><pages>443-449</pages><issn>0001-4346</issn><eissn>1573-8876</eissn><abstract>Let
H
be a subgroup of a group
G
. A normal subgroup
N
H
of
H
is said to be
inheritably normal
if there is a normal subgroup
N
G
of
G
such that
N
H
=
N
G
∩
H
. It is proved in the paper that a subgroup
of a factor
G
i
of the
n
-periodic product Π
i
∈
I
n
G
i
with nontrivial factors
G
i
is an inheritably normal subgroup if and only if
contains the subgroup
G
i
n
. It is also proved that for odd
n
≥ 665 every nontrivial normal subgroup in a given
n
-periodic product
G
= Π
i
∈
I
n
G
i
contains the subgroup
G
n
. It follows that almost all
n
-periodic products
G
=
G
1
*
n
G
2
are Hopfian, i.e., they are not isomorphic to any of their proper quotient groups. This allows one to construct nonsimple and not residually finite Hopfian groups of bounded exponents.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S000143461403016X</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2014-03, Vol.95 (3-4), p.443-449 |
issn | 0001-4346 1573-8876 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S000143461403016X |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics |
title | The Hopfian property of n-periodic products of groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hopfian%20property%20of%20n-periodic%20products%20of%20groups&rft.jtitle=Mathematical%20Notes&rft.au=Adian,%20S.%20I.&rft.date=2014-03-01&rft.volume=95&rft.issue=3-4&rft.spage=443&rft.epage=449&rft.pages=443-449&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S000143461403016X&rft_dat=%3Ccrossref_sprin%3E10_1134_S000143461403016X%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |