On iterated Browder-Livesay invariants

The Browder-Livesay invariants provide obstructions to the realization of elements of Wall groups by normal maps of closed manifolds. A generalization of the iterated Browder-Livesay invariants is proposed and properties of the invariants obtained are described. The generalized definition makes it p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2009-09, Vol.86 (1-2), p.196-215
Hauptverfasser: Cavicchioli, A., Muranov, Yu. V., Spaggiari, F., Hegenbarth, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 1-2
container_start_page 196
container_title Mathematical Notes
container_volume 86
creator Cavicchioli, A.
Muranov, Yu. V.
Spaggiari, F.
Hegenbarth, F.
description The Browder-Livesay invariants provide obstructions to the realization of elements of Wall groups by normal maps of closed manifolds. A generalization of the iterated Browder-Livesay invariants is proposed and properties of the invariants obtained are described. The generalized definition makes it possible to investigate the relationship between a normal map and its restriction to a submanifold and clarifies the relationship between the Browder-Livesay invariants and the Browder-Quinn groups of obstructions to surgery on filtered manifolds. Several theorems describing a relationship between a normal map and its restriction to a submanifold are proved.
doi_str_mv 10.1134/S0001434609070232
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0001434609070232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0001434609070232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-8aba9b2315fa4c75740830665b032405baf44bc4c1d985900ff8689aa0561f593</originalsourceid><addsrcrecordid>eNp9j09Lw0AQxRdRMFY_gLecvK3O7L_sHrVoFQI9tJ7DJNmVFE1kN1b67U2oN8HTY3jvN7zH2DXCLaJUdxsAQCWVAQcFCClOWIa6kNzawpyybLb57J-zi5R204UGIWM36z7vRh9p9G3-EIfv1kdednuf6JB3_Z5iR_2YLtlZoPfkr351wV6fHrfLZ16uVy_L-5I3wtqRW6rJ1UKiDqSaQhcKrARjdA1SKNA1BaXqRjXYOqsdQAjWWEcE2mDQTi4YHv82cUgp-lB9xu6D4qFCqOah1Z-hEyOOTJqy_ZuP1W74iv1U8x_oB7lmUss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On iterated Browder-Livesay invariants</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cavicchioli, A. ; Muranov, Yu. V. ; Spaggiari, F. ; Hegenbarth, F.</creator><creatorcontrib>Cavicchioli, A. ; Muranov, Yu. V. ; Spaggiari, F. ; Hegenbarth, F.</creatorcontrib><description>The Browder-Livesay invariants provide obstructions to the realization of elements of Wall groups by normal maps of closed manifolds. A generalization of the iterated Browder-Livesay invariants is proposed and properties of the invariants obtained are described. The generalized definition makes it possible to investigate the relationship between a normal map and its restriction to a submanifold and clarifies the relationship between the Browder-Livesay invariants and the Browder-Quinn groups of obstructions to surgery on filtered manifolds. Several theorems describing a relationship between a normal map and its restriction to a submanifold are proved.</description><identifier>ISSN: 0001-4346</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434609070232</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematical Notes, 2009-09, Vol.86 (1-2), p.196-215</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-8aba9b2315fa4c75740830665b032405baf44bc4c1d985900ff8689aa0561f593</citedby><cites>FETCH-LOGICAL-c288t-8aba9b2315fa4c75740830665b032405baf44bc4c1d985900ff8689aa0561f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434609070232$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434609070232$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cavicchioli, A.</creatorcontrib><creatorcontrib>Muranov, Yu. V.</creatorcontrib><creatorcontrib>Spaggiari, F.</creatorcontrib><creatorcontrib>Hegenbarth, F.</creatorcontrib><title>On iterated Browder-Livesay invariants</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>The Browder-Livesay invariants provide obstructions to the realization of elements of Wall groups by normal maps of closed manifolds. A generalization of the iterated Browder-Livesay invariants is proposed and properties of the invariants obtained are described. The generalized definition makes it possible to investigate the relationship between a normal map and its restriction to a submanifold and clarifies the relationship between the Browder-Livesay invariants and the Browder-Quinn groups of obstructions to surgery on filtered manifolds. Several theorems describing a relationship between a normal map and its restriction to a submanifold are proved.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0001-4346</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9j09Lw0AQxRdRMFY_gLecvK3O7L_sHrVoFQI9tJ7DJNmVFE1kN1b67U2oN8HTY3jvN7zH2DXCLaJUdxsAQCWVAQcFCClOWIa6kNzawpyybLb57J-zi5R204UGIWM36z7vRh9p9G3-EIfv1kdednuf6JB3_Z5iR_2YLtlZoPfkr351wV6fHrfLZ16uVy_L-5I3wtqRW6rJ1UKiDqSaQhcKrARjdA1SKNA1BaXqRjXYOqsdQAjWWEcE2mDQTi4YHv82cUgp-lB9xu6D4qFCqOah1Z-hEyOOTJqy_ZuP1W74iv1U8x_oB7lmUss</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Cavicchioli, A.</creator><creator>Muranov, Yu. V.</creator><creator>Spaggiari, F.</creator><creator>Hegenbarth, F.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200909</creationdate><title>On iterated Browder-Livesay invariants</title><author>Cavicchioli, A. ; Muranov, Yu. V. ; Spaggiari, F. ; Hegenbarth, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-8aba9b2315fa4c75740830665b032405baf44bc4c1d985900ff8689aa0561f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavicchioli, A.</creatorcontrib><creatorcontrib>Muranov, Yu. V.</creatorcontrib><creatorcontrib>Spaggiari, F.</creatorcontrib><creatorcontrib>Hegenbarth, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavicchioli, A.</au><au>Muranov, Yu. V.</au><au>Spaggiari, F.</au><au>Hegenbarth, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On iterated Browder-Livesay invariants</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2009-09</date><risdate>2009</risdate><volume>86</volume><issue>1-2</issue><spage>196</spage><epage>215</epage><pages>196-215</pages><issn>0001-4346</issn><eissn>1573-8876</eissn><abstract>The Browder-Livesay invariants provide obstructions to the realization of elements of Wall groups by normal maps of closed manifolds. A generalization of the iterated Browder-Livesay invariants is proposed and properties of the invariants obtained are described. The generalized definition makes it possible to investigate the relationship between a normal map and its restriction to a submanifold and clarifies the relationship between the Browder-Livesay invariants and the Browder-Quinn groups of obstructions to surgery on filtered manifolds. Several theorems describing a relationship between a normal map and its restriction to a submanifold are proved.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0001434609070232</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2009-09, Vol.86 (1-2), p.196-215
issn 0001-4346
1573-8876
language eng
recordid cdi_crossref_primary_10_1134_S0001434609070232
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
title On iterated Browder-Livesay invariants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20iterated%20Browder-Livesay%20invariants&rft.jtitle=Mathematical%20Notes&rft.au=Cavicchioli,%20A.&rft.date=2009-09&rft.volume=86&rft.issue=1-2&rft.spage=196&rft.epage=215&rft.pages=196-215&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434609070232&rft_dat=%3Ccrossref_sprin%3E10_1134_S0001434609070232%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true