Low-temperature thermochronology of the Black and Panamint Mountains, Death Valley, California; implications for geodynamic controls on Cenozoic intraplate strain
We use apatite and zircon (U-Th)/He thermochronometry to evaluate space-time patterns and tectonic drivers of Miocene to Pliocene deformation within the Death Valley area, eastern California. Zircon He ages from the footwall of the Amargosa-Black Mountains detachment in the Black Mountains record co...
Gespeichert in:
Veröffentlicht in: | Lithosphere 2015-08, Vol.7 (4), p.473-480 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 4 |
container_start_page | 473 |
container_title | Lithosphere |
container_volume | 7 |
creator | Bidgoli, Tandis S Amir, Erika Walker, J. Douglas Stockli, Daniel F Andrew, Joseph E Caskey, S. John |
description | We use apatite and zircon (U-Th)/He thermochronometry to evaluate space-time patterns and tectonic drivers of Miocene to Pliocene deformation within the Death Valley area, eastern California. Zircon He ages from the footwall of the Amargosa-Black Mountains detachment in the Black Mountains record continuous cooling and exhumation from 9 to 3 Ma. Thermal modeling of data from the central Black Mountains suggests that this cooling took place during two intervals: a period of rapid footwall exhumation from 10 to 6 Ma, followed by slower ( |
doi_str_mv | 10.1130/L406.1 |
format | Article |
fullrecord | <record><control><sourceid>geoscienceworld_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1130_L406_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015_079074</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-a3cc2b2d5a9492c04427b38b0a24c9b82fc61348064c4aaf16aa14a05bd109813</originalsourceid><addsrcrecordid>eNotkM1OwzAQhCMEEqXAM_jEhabYjpsfcYLwKxXBAbhGG8dpXRxvZbuqyuPwpCSUy-7o02i0O1F0zuiUsYRezQVNp-wgGrFCZLHgs-TwT7M456k4jk68X1GaplmWjaKfOW7joLq1chA2TpGwVK5DuXRo0eBiR7AdGLk1IL8I2Ia8gYVO20BecGMDaOsn5E5BWJJPMEbtJqQEo1t0VsM10d3aaAlBo_Wkh2ShsNkNCZJItMGh8QQtKZXFb-xhn-xgbSAo4nul7Wl01ILx6ux_j6OPh_v38imevz4-lzfzGBImQj-l5DVvZlCIgksqBM_qJK8pcCGLOuetTFkicpoKKQBalgIwAXRWN4wWOUvG0cU-Vzr03qm2WjvdgdtVjFZDs9XQbDUYL_fG_hUvtbJSbdGZplrhxtn-xIpTNqtoVtBMJL8cGX2B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-temperature thermochronology of the Black and Panamint Mountains, Death Valley, California; implications for geodynamic controls on Cenozoic intraplate strain</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bidgoli, Tandis S ; Amir, Erika ; Walker, J. Douglas ; Stockli, Daniel F ; Andrew, Joseph E ; Caskey, S. John</creator><creatorcontrib>Bidgoli, Tandis S ; Amir, Erika ; Walker, J. Douglas ; Stockli, Daniel F ; Andrew, Joseph E ; Caskey, S. John</creatorcontrib><description>We use apatite and zircon (U-Th)/He thermochronometry to evaluate space-time patterns and tectonic drivers of Miocene to Pliocene deformation within the Death Valley area, eastern California. Zircon He ages from the footwall of the Amargosa-Black Mountains detachment in the Black Mountains record continuous cooling and exhumation from 9 to 3 Ma. Thermal modeling of data from the central Black Mountains suggests that this cooling took place during two intervals: a period of rapid footwall exhumation from 10 to 6 Ma, followed by slower (<5 mm/yr) exhumation since 6 Ma. Cumulative exhumation is estimated to be 10-16 km. Paleodepth reconstruction of cooling ages from the footwall of the Panamint-Emigrant detachment, in the central Panamint Range, also show two periods of cooling. Zircons record late Miocene cooling, whereas apatite He ages show punctuated exhumation at ca. 4 Ma. The results suggest the Panamint Range experienced a minimum of 7.2 km of exhumation since ca. 12 Ma. The new data, when evaluated within the context of published fault timing data, suggest that the transition from Basin and Range extension to dextral transtension is spatially and temporally distinct, beginning at ca. 11-8 Ma in ranges to the east and north of the Black Mountains and migrating westward into eastern Death Valley at 6 Ma. Initiation of dextral transtension was coincident with a major change in plate-boundary relative motion vectors. Data from Panamint Range and several ranges to the west of Death Valley indicate transtension initiated over a large area at ca. 3-4 Ma, coeval with proposed lithospheric delamination in the central and southern Sierra Nevada Range. Our results suggest that the transition from extension to dextral transtension may reflect an evolution in tectonic drivers, from plate-boundary kinematics to intraplate lithospheric delamination.</description><identifier>ISSN: 1941-8264</identifier><identifier>EISSN: 1947-4253</identifier><identifier>DOI: 10.1130/L406.1</identifier><language>eng</language><publisher>Geological Society of America</publisher><subject>Amargosa-Black Mountains Fault ; Black Mountains ; California ; Cenozoic ; cooling ; Death Valley ; decollement ; eastern California ; exhumation ; faults ; geodynamics ; intraplate processes ; Inyo County California ; Kern County California ; lithosphere ; Miocene ; Neogene ; nesosilicates ; orthosilicates ; Panamint Range ; plate tectonics ; Pliocene ; San Bernardino County California ; Sheep Canyon ; silicates ; strain ; Structural geology ; temperature ; Tertiary ; thermochronology ; United States ; zircon ; zircon group</subject><ispartof>Lithosphere, 2015-08, Vol.7 (4), p.473-480</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-a3cc2b2d5a9492c04427b38b0a24c9b82fc61348064c4aaf16aa14a05bd109813</citedby><cites>FETCH-LOGICAL-a314t-a3cc2b2d5a9492c04427b38b0a24c9b82fc61348064c4aaf16aa14a05bd109813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bidgoli, Tandis S</creatorcontrib><creatorcontrib>Amir, Erika</creatorcontrib><creatorcontrib>Walker, J. Douglas</creatorcontrib><creatorcontrib>Stockli, Daniel F</creatorcontrib><creatorcontrib>Andrew, Joseph E</creatorcontrib><creatorcontrib>Caskey, S. John</creatorcontrib><title>Low-temperature thermochronology of the Black and Panamint Mountains, Death Valley, California; implications for geodynamic controls on Cenozoic intraplate strain</title><title>Lithosphere</title><description>We use apatite and zircon (U-Th)/He thermochronometry to evaluate space-time patterns and tectonic drivers of Miocene to Pliocene deformation within the Death Valley area, eastern California. Zircon He ages from the footwall of the Amargosa-Black Mountains detachment in the Black Mountains record continuous cooling and exhumation from 9 to 3 Ma. Thermal modeling of data from the central Black Mountains suggests that this cooling took place during two intervals: a period of rapid footwall exhumation from 10 to 6 Ma, followed by slower (<5 mm/yr) exhumation since 6 Ma. Cumulative exhumation is estimated to be 10-16 km. Paleodepth reconstruction of cooling ages from the footwall of the Panamint-Emigrant detachment, in the central Panamint Range, also show two periods of cooling. Zircons record late Miocene cooling, whereas apatite He ages show punctuated exhumation at ca. 4 Ma. The results suggest the Panamint Range experienced a minimum of 7.2 km of exhumation since ca. 12 Ma. The new data, when evaluated within the context of published fault timing data, suggest that the transition from Basin and Range extension to dextral transtension is spatially and temporally distinct, beginning at ca. 11-8 Ma in ranges to the east and north of the Black Mountains and migrating westward into eastern Death Valley at 6 Ma. Initiation of dextral transtension was coincident with a major change in plate-boundary relative motion vectors. Data from Panamint Range and several ranges to the west of Death Valley indicate transtension initiated over a large area at ca. 3-4 Ma, coeval with proposed lithospheric delamination in the central and southern Sierra Nevada Range. Our results suggest that the transition from extension to dextral transtension may reflect an evolution in tectonic drivers, from plate-boundary kinematics to intraplate lithospheric delamination.</description><subject>Amargosa-Black Mountains Fault</subject><subject>Black Mountains</subject><subject>California</subject><subject>Cenozoic</subject><subject>cooling</subject><subject>Death Valley</subject><subject>decollement</subject><subject>eastern California</subject><subject>exhumation</subject><subject>faults</subject><subject>geodynamics</subject><subject>intraplate processes</subject><subject>Inyo County California</subject><subject>Kern County California</subject><subject>lithosphere</subject><subject>Miocene</subject><subject>Neogene</subject><subject>nesosilicates</subject><subject>orthosilicates</subject><subject>Panamint Range</subject><subject>plate tectonics</subject><subject>Pliocene</subject><subject>San Bernardino County California</subject><subject>Sheep Canyon</subject><subject>silicates</subject><subject>strain</subject><subject>Structural geology</subject><subject>temperature</subject><subject>Tertiary</subject><subject>thermochronology</subject><subject>United States</subject><subject>zircon</subject><subject>zircon group</subject><issn>1941-8264</issn><issn>1947-4253</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhCMEEqXAM_jEhabYjpsfcYLwKxXBAbhGG8dpXRxvZbuqyuPwpCSUy-7o02i0O1F0zuiUsYRezQVNp-wgGrFCZLHgs-TwT7M456k4jk68X1GaplmWjaKfOW7joLq1chA2TpGwVK5DuXRo0eBiR7AdGLk1IL8I2Ia8gYVO20BecGMDaOsn5E5BWJJPMEbtJqQEo1t0VsM10d3aaAlBo_Wkh2ShsNkNCZJItMGh8QQtKZXFb-xhn-xgbSAo4nul7Wl01ILx6ux_j6OPh_v38imevz4-lzfzGBImQj-l5DVvZlCIgksqBM_qJK8pcCGLOuetTFkicpoKKQBalgIwAXRWN4wWOUvG0cU-Vzr03qm2WjvdgdtVjFZDs9XQbDUYL_fG_hUvtbJSbdGZplrhxtn-xIpTNqtoVtBMJL8cGX2B</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Bidgoli, Tandis S</creator><creator>Amir, Erika</creator><creator>Walker, J. Douglas</creator><creator>Stockli, Daniel F</creator><creator>Andrew, Joseph E</creator><creator>Caskey, S. John</creator><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150801</creationdate><title>Low-temperature thermochronology of the Black and Panamint Mountains, Death Valley, California; implications for geodynamic controls on Cenozoic intraplate strain</title><author>Bidgoli, Tandis S ; Amir, Erika ; Walker, J. Douglas ; Stockli, Daniel F ; Andrew, Joseph E ; Caskey, S. John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-a3cc2b2d5a9492c04427b38b0a24c9b82fc61348064c4aaf16aa14a05bd109813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amargosa-Black Mountains Fault</topic><topic>Black Mountains</topic><topic>California</topic><topic>Cenozoic</topic><topic>cooling</topic><topic>Death Valley</topic><topic>decollement</topic><topic>eastern California</topic><topic>exhumation</topic><topic>faults</topic><topic>geodynamics</topic><topic>intraplate processes</topic><topic>Inyo County California</topic><topic>Kern County California</topic><topic>lithosphere</topic><topic>Miocene</topic><topic>Neogene</topic><topic>nesosilicates</topic><topic>orthosilicates</topic><topic>Panamint Range</topic><topic>plate tectonics</topic><topic>Pliocene</topic><topic>San Bernardino County California</topic><topic>Sheep Canyon</topic><topic>silicates</topic><topic>strain</topic><topic>Structural geology</topic><topic>temperature</topic><topic>Tertiary</topic><topic>thermochronology</topic><topic>United States</topic><topic>zircon</topic><topic>zircon group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bidgoli, Tandis S</creatorcontrib><creatorcontrib>Amir, Erika</creatorcontrib><creatorcontrib>Walker, J. Douglas</creatorcontrib><creatorcontrib>Stockli, Daniel F</creatorcontrib><creatorcontrib>Andrew, Joseph E</creatorcontrib><creatorcontrib>Caskey, S. John</creatorcontrib><collection>CrossRef</collection><jtitle>Lithosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bidgoli, Tandis S</au><au>Amir, Erika</au><au>Walker, J. Douglas</au><au>Stockli, Daniel F</au><au>Andrew, Joseph E</au><au>Caskey, S. John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature thermochronology of the Black and Panamint Mountains, Death Valley, California; implications for geodynamic controls on Cenozoic intraplate strain</atitle><jtitle>Lithosphere</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>7</volume><issue>4</issue><spage>473</spage><epage>480</epage><pages>473-480</pages><issn>1941-8264</issn><eissn>1947-4253</eissn><abstract>We use apatite and zircon (U-Th)/He thermochronometry to evaluate space-time patterns and tectonic drivers of Miocene to Pliocene deformation within the Death Valley area, eastern California. Zircon He ages from the footwall of the Amargosa-Black Mountains detachment in the Black Mountains record continuous cooling and exhumation from 9 to 3 Ma. Thermal modeling of data from the central Black Mountains suggests that this cooling took place during two intervals: a period of rapid footwall exhumation from 10 to 6 Ma, followed by slower (<5 mm/yr) exhumation since 6 Ma. Cumulative exhumation is estimated to be 10-16 km. Paleodepth reconstruction of cooling ages from the footwall of the Panamint-Emigrant detachment, in the central Panamint Range, also show two periods of cooling. Zircons record late Miocene cooling, whereas apatite He ages show punctuated exhumation at ca. 4 Ma. The results suggest the Panamint Range experienced a minimum of 7.2 km of exhumation since ca. 12 Ma. The new data, when evaluated within the context of published fault timing data, suggest that the transition from Basin and Range extension to dextral transtension is spatially and temporally distinct, beginning at ca. 11-8 Ma in ranges to the east and north of the Black Mountains and migrating westward into eastern Death Valley at 6 Ma. Initiation of dextral transtension was coincident with a major change in plate-boundary relative motion vectors. Data from Panamint Range and several ranges to the west of Death Valley indicate transtension initiated over a large area at ca. 3-4 Ma, coeval with proposed lithospheric delamination in the central and southern Sierra Nevada Range. Our results suggest that the transition from extension to dextral transtension may reflect an evolution in tectonic drivers, from plate-boundary kinematics to intraplate lithospheric delamination.</abstract><pub>Geological Society of America</pub><doi>10.1130/L406.1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1941-8264 |
ispartof | Lithosphere, 2015-08, Vol.7 (4), p.473-480 |
issn | 1941-8264 1947-4253 |
language | eng |
recordid | cdi_crossref_primary_10_1130_L406_1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amargosa-Black Mountains Fault Black Mountains California Cenozoic cooling Death Valley decollement eastern California exhumation faults geodynamics intraplate processes Inyo County California Kern County California lithosphere Miocene Neogene nesosilicates orthosilicates Panamint Range plate tectonics Pliocene San Bernardino County California Sheep Canyon silicates strain Structural geology temperature Tertiary thermochronology United States zircon zircon group |
title | Low-temperature thermochronology of the Black and Panamint Mountains, Death Valley, California; implications for geodynamic controls on Cenozoic intraplate strain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-geoscienceworld_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20thermochronology%20of%20the%20Black%20and%20Panamint%20Mountains,%20Death%20Valley,%20California;%20implications%20for%20geodynamic%20controls%20on%20Cenozoic%20intraplate%20strain&rft.jtitle=Lithosphere&rft.au=Bidgoli,%20Tandis%20S&rft.date=2015-08-01&rft.volume=7&rft.issue=4&rft.spage=473&rft.epage=480&rft.pages=473-480&rft.issn=1941-8264&rft.eissn=1947-4253&rft_id=info:doi/10.1130/L406.1&rft_dat=%3Cgeoscienceworld_cross%3E2015_079074%3C/geoscienceworld_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |