Reactive Oxygen Species Signaling Promotes Hypoxia-Inducible Factor 1α Stabilization in Sonic Hedgehog-Driven Cerebellar Progenitor Cell Proliferation

Cerebellar development is a highly regulated process involving numerous factors acting with high specificity, both temporally and by location. Part of this process involves extensive proliferation of cerebellar granule neuron precursors (CGNPs) induced by Sonic Hedgehog (SHH) signaling, but downstre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biology 2019-04, Vol.39 (8)
Hauptverfasser: Eyrich, Nicholas W., Potts, Chad R., Robinson, M. Hope, Maximov, Victor, Kenney, Anna M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Molecular and cellular biology
container_volume 39
creator Eyrich, Nicholas W.
Potts, Chad R.
Robinson, M. Hope
Maximov, Victor
Kenney, Anna M.
description Cerebellar development is a highly regulated process involving numerous factors acting with high specificity, both temporally and by location. Part of this process involves extensive proliferation of cerebellar granule neuron precursors (CGNPs) induced by Sonic Hedgehog (SHH) signaling, but downstream effectors of mitogenic signaling are still being elucidated. Using primary CGNP cultures, a well-established model for SHH-driven proliferation, we show that SHH-treated CGNPs feature high levels of hypoxia-inducible factor 1α (HIF1α), which is known to promote glycolysis, stemness, and angiogenesis. In CGNPs cultured under normoxic conditions, HIF1α is posttranslationally stabilized in a manner dependent upon reactive oxygen species (ROS) and NADPH oxidase (NOX), both of which are also upregulated in these cells. Inhibition of NOX activity resulted in HIF1α destabilization and reduced levels of cyclin D2, a marker of CGNP proliferation. As CGNPs are the putative cells of origin for the SHH subtype of medulloblastoma and aberrant SHH signaling is implicated in other neoplasms, these studies may also have future relevance in the context of cancer. Taken together, our findings suggest that a better understanding of nonhypoxic HIF1α stabilization through NOX-induced ROS generation can provide insights into normal cell proliferation in cerebellar development and SHH-driven cell proliferation in cancers with aberrant SHH signaling.
doi_str_mv 10.1128/MCB.00268-18
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1128_MCB_00268_18</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179462022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-affded5125e100bba545ec288e7ebff4cd6d2851a88e6363a6872bff6d3d69103</originalsourceid><addsrcrecordid>eNptkcFu1DAQhiMEoqVw44x85ECK7SROckGCQNlKRUUsnC3HnqSDHHuxs6XLi_AcvAjPhNMtVZE4efzP72_G-rPsKaPHjPHm5YfuzTGlXDQ5a-5lh4y2TV5VZXv_Tn2QPYrxK6VUtLR4mB0UqeC85ofZz0-g9IyXQM6vdiM4st6ARohkjaNTFt1IPgY_-TlJq93GX6HKT53ZauwtkJP01gfCfv8i61n1aPGHmtE7ggnkHWqyAjPChR_ztyENcaSDAD1Yq8LCTQNxAXRJWe4WBwjXhMfZg0HZCE9uzqPsy8m7z90qPzt_f9q9Pst1Ificq2EwYCrGK2CU9r2qygo0bxqooR-GUhtheFMxlRRRiEKJpuapIUxhRMtocZS92nM3234Co8HNQVm5CTipsJNeofy34_BCjv5SirKsSyYS4PkNIPhvW4iznDDq5YcO_DZKzuq2FJxynqwv9lYdfIwBhtsxjMolS5mylNdZStYk-7O7q92a_4aXDPXegG7wYVLffbBGzmpnfRiCchqjLP6L_gOJF7Gw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179462022</pqid></control><display><type>article</type><title>Reactive Oxygen Species Signaling Promotes Hypoxia-Inducible Factor 1α Stabilization in Sonic Hedgehog-Driven Cerebellar Progenitor Cell Proliferation</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Eyrich, Nicholas W. ; Potts, Chad R. ; Robinson, M. Hope ; Maximov, Victor ; Kenney, Anna M.</creator><creatorcontrib>Eyrich, Nicholas W. ; Potts, Chad R. ; Robinson, M. Hope ; Maximov, Victor ; Kenney, Anna M.</creatorcontrib><description>Cerebellar development is a highly regulated process involving numerous factors acting with high specificity, both temporally and by location. Part of this process involves extensive proliferation of cerebellar granule neuron precursors (CGNPs) induced by Sonic Hedgehog (SHH) signaling, but downstream effectors of mitogenic signaling are still being elucidated. Using primary CGNP cultures, a well-established model for SHH-driven proliferation, we show that SHH-treated CGNPs feature high levels of hypoxia-inducible factor 1α (HIF1α), which is known to promote glycolysis, stemness, and angiogenesis. In CGNPs cultured under normoxic conditions, HIF1α is posttranslationally stabilized in a manner dependent upon reactive oxygen species (ROS) and NADPH oxidase (NOX), both of which are also upregulated in these cells. Inhibition of NOX activity resulted in HIF1α destabilization and reduced levels of cyclin D2, a marker of CGNP proliferation. As CGNPs are the putative cells of origin for the SHH subtype of medulloblastoma and aberrant SHH signaling is implicated in other neoplasms, these studies may also have future relevance in the context of cancer. Taken together, our findings suggest that a better understanding of nonhypoxic HIF1α stabilization through NOX-induced ROS generation can provide insights into normal cell proliferation in cerebellar development and SHH-driven cell proliferation in cancers with aberrant SHH signaling.</description><identifier>ISSN: 1098-5549</identifier><identifier>ISSN: 0270-7306</identifier><identifier>EISSN: 1098-5549</identifier><identifier>DOI: 10.1128/MCB.00268-18</identifier><identifier>PMID: 30692272</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; Cell Proliferation - physiology ; Cells, Cultured ; Cerebellar Neoplasms ; Cerebellum - cytology ; Cerebellum - metabolism ; Female ; Hedgehog Proteins - metabolism ; Hypoxia - metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; hypoxia-inducible factor 1a ; Male ; medulloblastoma ; Mice ; NADPH Oxidases - metabolism ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neurons - cytology ; Neurons - metabolism ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; Signal Transduction ; Sonic Hedgehog ; stem cells ; Stem Cells - cytology ; Stem Cells - metabolism</subject><ispartof>Molecular and cellular biology, 2019-04, Vol.39 (8)</ispartof><rights>Copyright © 2019 American Society for Microbiology 2019</rights><rights>Copyright © 2019 American Society for Microbiology.</rights><rights>Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-affded5125e100bba545ec288e7ebff4cd6d2851a88e6363a6872bff6d3d69103</citedby><cites>FETCH-LOGICAL-c362t-affded5125e100bba545ec288e7ebff4cd6d2851a88e6363a6872bff6d3d69103</cites><orcidid>0000-0001-8323-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447416/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447416/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30692272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eyrich, Nicholas W.</creatorcontrib><creatorcontrib>Potts, Chad R.</creatorcontrib><creatorcontrib>Robinson, M. Hope</creatorcontrib><creatorcontrib>Maximov, Victor</creatorcontrib><creatorcontrib>Kenney, Anna M.</creatorcontrib><title>Reactive Oxygen Species Signaling Promotes Hypoxia-Inducible Factor 1α Stabilization in Sonic Hedgehog-Driven Cerebellar Progenitor Cell Proliferation</title><title>Molecular and cellular biology</title><addtitle>Mol Cell Biol</addtitle><description>Cerebellar development is a highly regulated process involving numerous factors acting with high specificity, both temporally and by location. Part of this process involves extensive proliferation of cerebellar granule neuron precursors (CGNPs) induced by Sonic Hedgehog (SHH) signaling, but downstream effectors of mitogenic signaling are still being elucidated. Using primary CGNP cultures, a well-established model for SHH-driven proliferation, we show that SHH-treated CGNPs feature high levels of hypoxia-inducible factor 1α (HIF1α), which is known to promote glycolysis, stemness, and angiogenesis. In CGNPs cultured under normoxic conditions, HIF1α is posttranslationally stabilized in a manner dependent upon reactive oxygen species (ROS) and NADPH oxidase (NOX), both of which are also upregulated in these cells. Inhibition of NOX activity resulted in HIF1α destabilization and reduced levels of cyclin D2, a marker of CGNP proliferation. As CGNPs are the putative cells of origin for the SHH subtype of medulloblastoma and aberrant SHH signaling is implicated in other neoplasms, these studies may also have future relevance in the context of cancer. Taken together, our findings suggest that a better understanding of nonhypoxic HIF1α stabilization through NOX-induced ROS generation can provide insights into normal cell proliferation in cerebellar development and SHH-driven cell proliferation in cancers with aberrant SHH signaling.</description><subject>Animals</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Cerebellar Neoplasms</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - metabolism</subject><subject>Female</subject><subject>Hedgehog Proteins - metabolism</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>hypoxia-inducible factor 1a</subject><subject>Male</subject><subject>medulloblastoma</subject><subject>Mice</subject><subject>NADPH Oxidases - metabolism</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signal Transduction</subject><subject>Sonic Hedgehog</subject><subject>stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><issn>1098-5549</issn><issn>0270-7306</issn><issn>1098-5549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkcFu1DAQhiMEoqVw44x85ECK7SROckGCQNlKRUUsnC3HnqSDHHuxs6XLi_AcvAjPhNMtVZE4efzP72_G-rPsKaPHjPHm5YfuzTGlXDQ5a-5lh4y2TV5VZXv_Tn2QPYrxK6VUtLR4mB0UqeC85ofZz0-g9IyXQM6vdiM4st6ARohkjaNTFt1IPgY_-TlJq93GX6HKT53ZauwtkJP01gfCfv8i61n1aPGHmtE7ggnkHWqyAjPChR_ztyENcaSDAD1Yq8LCTQNxAXRJWe4WBwjXhMfZg0HZCE9uzqPsy8m7z90qPzt_f9q9Pst1Ificq2EwYCrGK2CU9r2qygo0bxqooR-GUhtheFMxlRRRiEKJpuapIUxhRMtocZS92nM3234Co8HNQVm5CTipsJNeofy34_BCjv5SirKsSyYS4PkNIPhvW4iznDDq5YcO_DZKzuq2FJxynqwv9lYdfIwBhtsxjMolS5mylNdZStYk-7O7q92a_4aXDPXegG7wYVLffbBGzmpnfRiCchqjLP6L_gOJF7Gw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Eyrich, Nicholas W.</creator><creator>Potts, Chad R.</creator><creator>Robinson, M. Hope</creator><creator>Maximov, Victor</creator><creator>Kenney, Anna M.</creator><general>Taylor &amp; Francis</general><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8323-0618</orcidid></search><sort><creationdate>20190401</creationdate><title>Reactive Oxygen Species Signaling Promotes Hypoxia-Inducible Factor 1α Stabilization in Sonic Hedgehog-Driven Cerebellar Progenitor Cell Proliferation</title><author>Eyrich, Nicholas W. ; Potts, Chad R. ; Robinson, M. Hope ; Maximov, Victor ; Kenney, Anna M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-affded5125e100bba545ec288e7ebff4cd6d2851a88e6363a6872bff6d3d69103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Cerebellar Neoplasms</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - metabolism</topic><topic>Female</topic><topic>Hedgehog Proteins - metabolism</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>hypoxia-inducible factor 1a</topic><topic>Male</topic><topic>medulloblastoma</topic><topic>Mice</topic><topic>NADPH Oxidases - metabolism</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signal Transduction</topic><topic>Sonic Hedgehog</topic><topic>stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eyrich, Nicholas W.</creatorcontrib><creatorcontrib>Potts, Chad R.</creatorcontrib><creatorcontrib>Robinson, M. Hope</creatorcontrib><creatorcontrib>Maximov, Victor</creatorcontrib><creatorcontrib>Kenney, Anna M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular and cellular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eyrich, Nicholas W.</au><au>Potts, Chad R.</au><au>Robinson, M. Hope</au><au>Maximov, Victor</au><au>Kenney, Anna M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive Oxygen Species Signaling Promotes Hypoxia-Inducible Factor 1α Stabilization in Sonic Hedgehog-Driven Cerebellar Progenitor Cell Proliferation</atitle><jtitle>Molecular and cellular biology</jtitle><addtitle>Mol Cell Biol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>39</volume><issue>8</issue><issn>1098-5549</issn><issn>0270-7306</issn><eissn>1098-5549</eissn><abstract>Cerebellar development is a highly regulated process involving numerous factors acting with high specificity, both temporally and by location. Part of this process involves extensive proliferation of cerebellar granule neuron precursors (CGNPs) induced by Sonic Hedgehog (SHH) signaling, but downstream effectors of mitogenic signaling are still being elucidated. Using primary CGNP cultures, a well-established model for SHH-driven proliferation, we show that SHH-treated CGNPs feature high levels of hypoxia-inducible factor 1α (HIF1α), which is known to promote glycolysis, stemness, and angiogenesis. In CGNPs cultured under normoxic conditions, HIF1α is posttranslationally stabilized in a manner dependent upon reactive oxygen species (ROS) and NADPH oxidase (NOX), both of which are also upregulated in these cells. Inhibition of NOX activity resulted in HIF1α destabilization and reduced levels of cyclin D2, a marker of CGNP proliferation. As CGNPs are the putative cells of origin for the SHH subtype of medulloblastoma and aberrant SHH signaling is implicated in other neoplasms, these studies may also have future relevance in the context of cancer. Taken together, our findings suggest that a better understanding of nonhypoxic HIF1α stabilization through NOX-induced ROS generation can provide insights into normal cell proliferation in cerebellar development and SHH-driven cell proliferation in cancers with aberrant SHH signaling.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>30692272</pmid><doi>10.1128/MCB.00268-18</doi><orcidid>https://orcid.org/0000-0001-8323-0618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-5549
ispartof Molecular and cellular biology, 2019-04, Vol.39 (8)
issn 1098-5549
0270-7306
1098-5549
language eng
recordid cdi_crossref_primary_10_1128_MCB_00268_18
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Cell Proliferation - physiology
Cells, Cultured
Cerebellar Neoplasms
Cerebellum - cytology
Cerebellum - metabolism
Female
Hedgehog Proteins - metabolism
Hypoxia - metabolism
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
hypoxia-inducible factor 1a
Male
medulloblastoma
Mice
NADPH Oxidases - metabolism
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neurons - cytology
Neurons - metabolism
reactive oxygen species
Reactive Oxygen Species - metabolism
Signal Transduction
Sonic Hedgehog
stem cells
Stem Cells - cytology
Stem Cells - metabolism
title Reactive Oxygen Species Signaling Promotes Hypoxia-Inducible Factor 1α Stabilization in Sonic Hedgehog-Driven Cerebellar Progenitor Cell Proliferation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20Oxygen%20Species%20Signaling%20Promotes%20Hypoxia-Inducible%20Factor%201%CE%B1%20Stabilization%20in%20Sonic%20Hedgehog-Driven%20Cerebellar%20Progenitor%20Cell%20Proliferation&rft.jtitle=Molecular%20and%20cellular%20biology&rft.au=Eyrich,%20Nicholas%20W.&rft.date=2019-04-01&rft.volume=39&rft.issue=8&rft.issn=1098-5549&rft.eissn=1098-5549&rft_id=info:doi/10.1128/MCB.00268-18&rft_dat=%3Cproquest_cross%3E2179462022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179462022&rft_id=info:pmid/30692272&rfr_iscdi=true