Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms

Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Bacteriology 2013-12, Vol.195 (24), p.5540-5554
Hauptverfasser: Serra, Diego O, Richter, Anja M, Hengge, Regine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5554
container_issue 24
container_start_page 5540
container_title Journal of Bacteriology
container_volume 195
creator Serra, Diego O
Richter, Anja M
Hengge, Regine
description Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of “nature and nurture” in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used “domesticated” E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by “repairing” a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this “de-domesticated” strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that—together with the cell-encasing curli fiber network and geometrical constraints in a growing colony—explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and “tissue-like” bacterial biofilms.
doi_str_mv 10.1128/jb.00946-13
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1128_JB_00946_13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664198209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-d6415230306eae189295e05a9cd7b79785aa599bdd72a73326c1fefc574b671b3</originalsourceid><addsrcrecordid>eNqF0stv1DAQB2ALgei2cOIOEVyQUIrfjwtSu1peqsRhqThajuNsvHLixU5A_e_rsKUCLpx8mM-jn2cMwDMEzxHC8u2-OYdQUV4j8gCsEFSyZozAh2AFIUa1QoqcgNOc9xAiShl-DE4whUooRlfg29qFMIeYXWVyZcbqItneT85OczKh2gQ3uHGq_FhtD2byJoSbajuleam7ttpk27vkyxVT2Rh8delj58OQn4BHnQnZPb07z8D1-83X9cf66suHT-uLq9pySqa65RQxTCCB3BmHpMKKOciMsq1ohBKSGcOUatpWYCMIwdyiznWWCdpwgRpyBt4d-x7mZnCtLWFLbn1IfjDpRkfj9d-V0fd6F39oIqXikJYGr-8apPh9dnnSg8-2DMWMLs5ZI14iKomh-j-lHEnOiJCFvvqH7uOcxjKJRVGhIGSkqDdHZVPMObnuPjeCetmt_nypf-1Wo0U___Op9_b3Mgt4eQS93_U_fXLa5EHvG40UK0ozRmFBL46oM1GbXfJZX28xRGz5HZxzSW4BkY6y3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464790053</pqid></control><display><type>article</type><title>Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Serra, Diego O ; Richter, Anja M ; Hengge, Regine</creator><creatorcontrib>Serra, Diego O ; Richter, Anja M ; Hengge, Regine</creatorcontrib><description>Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of “nature and nurture” in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used “domesticated” E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by “repairing” a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this “de-domesticated” strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that—together with the cell-encasing curli fiber network and geometrical constraints in a growing colony—explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and “tissue-like” bacterial biofilms.</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>EISSN: 1067-8832</identifier><identifier>DOI: 10.1128/jb.00946-13</identifier><identifier>PMID: 24097954</identifier><identifier>CODEN: JOBAAY</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>amyloid ; Bacterial Proteins - metabolism ; Bacterial Proteins - ultrastructure ; Bacteriology ; biofilm ; Biofilms ; Biofilms - growth &amp; development ; Cellulose ; Cellulose - metabolism ; Chromosomes ; cohesion ; E coli ; Escherichia coli ; Escherichia coli K12 - genetics ; Escherichia coli K12 - metabolism ; Escherichia coli K12 - physiology ; extracellular matrix ; Fluorescence ; fluorescence microscopy ; Microscopy, Electron, Scanning ; Microscopy, Fluorescence ; morphogenesis ; Morphology ; nanocomposites ; operon ; Point Mutation ; single nucleotide polymorphism</subject><ispartof>Journal of Bacteriology, 2013-12, Vol.195 (24), p.5540-5554</ispartof><rights>Copyright American Society for Microbiology Dec 2013</rights><rights>Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-d6415230306eae189295e05a9cd7b79785aa599bdd72a73326c1fefc574b671b3</citedby><cites>FETCH-LOGICAL-c643t-d6415230306eae189295e05a9cd7b79785aa599bdd72a73326c1fefc574b671b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889604/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889604/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24097954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Serra, Diego O</creatorcontrib><creatorcontrib>Richter, Anja M</creatorcontrib><creatorcontrib>Hengge, Regine</creatorcontrib><title>Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms</title><title>Journal of Bacteriology</title><addtitle>J Bacteriol</addtitle><description>Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of “nature and nurture” in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used “domesticated” E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by “repairing” a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this “de-domesticated” strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that—together with the cell-encasing curli fiber network and geometrical constraints in a growing colony—explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and “tissue-like” bacterial biofilms.</description><subject>amyloid</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Bacteriology</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Chromosomes</subject><subject>cohesion</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli K12 - genetics</subject><subject>Escherichia coli K12 - metabolism</subject><subject>Escherichia coli K12 - physiology</subject><subject>extracellular matrix</subject><subject>Fluorescence</subject><subject>fluorescence microscopy</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Fluorescence</subject><subject>morphogenesis</subject><subject>Morphology</subject><subject>nanocomposites</subject><subject>operon</subject><subject>Point Mutation</subject><subject>single nucleotide polymorphism</subject><issn>0021-9193</issn><issn>1098-5530</issn><issn>1067-8832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0stv1DAQB2ALgei2cOIOEVyQUIrfjwtSu1peqsRhqThajuNsvHLixU5A_e_rsKUCLpx8mM-jn2cMwDMEzxHC8u2-OYdQUV4j8gCsEFSyZozAh2AFIUa1QoqcgNOc9xAiShl-DE4whUooRlfg29qFMIeYXWVyZcbqItneT85OczKh2gQ3uHGq_FhtD2byJoSbajuleam7ttpk27vkyxVT2Rh8delj58OQn4BHnQnZPb07z8D1-83X9cf66suHT-uLq9pySqa65RQxTCCB3BmHpMKKOciMsq1ohBKSGcOUatpWYCMIwdyiznWWCdpwgRpyBt4d-x7mZnCtLWFLbn1IfjDpRkfj9d-V0fd6F39oIqXikJYGr-8apPh9dnnSg8-2DMWMLs5ZI14iKomh-j-lHEnOiJCFvvqH7uOcxjKJRVGhIGSkqDdHZVPMObnuPjeCetmt_nypf-1Wo0U___Op9_b3Mgt4eQS93_U_fXLa5EHvG40UK0ozRmFBL46oM1GbXfJZX28xRGz5HZxzSW4BkY6y3g</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Serra, Diego O</creator><creator>Richter, Anja M</creator><creator>Hengge, Regine</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms</title><author>Serra, Diego O ; Richter, Anja M ; Hengge, Regine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-d6415230306eae189295e05a9cd7b79785aa599bdd72a73326c1fefc574b671b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>amyloid</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Bacteriology</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Chromosomes</topic><topic>cohesion</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli K12 - genetics</topic><topic>Escherichia coli K12 - metabolism</topic><topic>Escherichia coli K12 - physiology</topic><topic>extracellular matrix</topic><topic>Fluorescence</topic><topic>fluorescence microscopy</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Fluorescence</topic><topic>morphogenesis</topic><topic>Morphology</topic><topic>nanocomposites</topic><topic>operon</topic><topic>Point Mutation</topic><topic>single nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serra, Diego O</creatorcontrib><creatorcontrib>Richter, Anja M</creatorcontrib><creatorcontrib>Hengge, Regine</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serra, Diego O</au><au>Richter, Anja M</au><au>Hengge, Regine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms</atitle><jtitle>Journal of Bacteriology</jtitle><addtitle>J Bacteriol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>195</volume><issue>24</issue><spage>5540</spage><epage>5554</epage><pages>5540-5554</pages><issn>0021-9193</issn><eissn>1098-5530</eissn><eissn>1067-8832</eissn><coden>JOBAAY</coden><abstract>Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of “nature and nurture” in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used “domesticated” E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by “repairing” a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this “de-domesticated” strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that—together with the cell-encasing curli fiber network and geometrical constraints in a growing colony—explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and “tissue-like” bacterial biofilms.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>24097954</pmid><doi>10.1128/jb.00946-13</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9193
ispartof Journal of Bacteriology, 2013-12, Vol.195 (24), p.5540-5554
issn 0021-9193
1098-5530
1067-8832
language eng
recordid cdi_crossref_primary_10_1128_JB_00946_13
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects amyloid
Bacterial Proteins - metabolism
Bacterial Proteins - ultrastructure
Bacteriology
biofilm
Biofilms
Biofilms - growth & development
Cellulose
Cellulose - metabolism
Chromosomes
cohesion
E coli
Escherichia coli
Escherichia coli K12 - genetics
Escherichia coli K12 - metabolism
Escherichia coli K12 - physiology
extracellular matrix
Fluorescence
fluorescence microscopy
Microscopy, Electron, Scanning
Microscopy, Fluorescence
morphogenesis
Morphology
nanocomposites
operon
Point Mutation
single nucleotide polymorphism
title Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulose%20as%20an%20Architectural%20Element%20in%20Spatially%20Structured%20Escherichia%20coli%20Biofilms&rft.jtitle=Journal%20of%20Bacteriology&rft.au=Serra,%20Diego%20O&rft.date=2013-12-01&rft.volume=195&rft.issue=24&rft.spage=5540&rft.epage=5554&rft.pages=5540-5554&rft.issn=0021-9193&rft.eissn=1098-5530&rft.coden=JOBAAY&rft_id=info:doi/10.1128/jb.00946-13&rft_dat=%3Cproquest_cross%3E1664198209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464790053&rft_id=info:pmid/24097954&rfr_iscdi=true