Cyclic AMP-Dependent Catabolite Repression System of Serratia marcescens Mediates Biofilm Formation through Regulation of Type 1 Fimbriae

The mechanisms by which environmental carbon sources regulate biofilm formation are poorly understood. This study investigates the roles of glucose and the catabolite repression system in Serratia marcescens biofilm formation. The abilities of this opportunistic pathogen to proliferate in a wide ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2008-06, Vol.74 (11), p.3461-3470
Hauptverfasser: Kalivoda, Eric J, Stella, Nicholas A, O'Dee, Dawn M, Nau, Gerard J, Shanks, Robert M.Q
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3470
container_issue 11
container_start_page 3461
container_title Applied and Environmental Microbiology
container_volume 74
creator Kalivoda, Eric J
Stella, Nicholas A
O'Dee, Dawn M
Nau, Gerard J
Shanks, Robert M.Q
description The mechanisms by which environmental carbon sources regulate biofilm formation are poorly understood. This study investigates the roles of glucose and the catabolite repression system in Serratia marcescens biofilm formation. The abilities of this opportunistic pathogen to proliferate in a wide range of environments, to cause disease, and to resist antimicrobials are linked to its ability to form biofilms. We observed that growth of S. marcescens in glucose-rich medium strongly stimulated biofilm formation, which contrasts with previous studies showing that biofilm formation is inhibited by glucose in Escherichia coli and other enteric bacteria. Glucose uptake is known to inversely mediate intracellular cyclic AMP (cAMP) synthesis through regulation of adenylate cyclase (cyaA) activity, which in turn controls fundamental processes such as motility, carbon utilization and storage, pathogenesis, and cell division in many bacteria. Here, we demonstrate that mutation of catabolite repression genes that regulate cAMP levels (crr and cyaA) or the ability to respond to cAMP (crp) confers a large increase in biofilm formation. Suppressor analysis revealed that phenotypes of a cAMP receptor protein (crp) mutant require the fimABCD operon, which is responsible for type 1 fimbria production. Consistently, fimA transcription and fimbria production were determined to be upregulated in a cyaA mutant background by using quantitative real-time reverse transcription-PCR and transmission electron microscopy analysis. The regulatory pathway by which environmental carbon sources influence cAMP concentrations to alter production of type 1 fimbrial adhesins establishes a novel mechanism by which bacteria control biofilm development.
doi_str_mv 10.1128/AEM.02733-07
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1128_AEM_02733_07</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20866258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-874b718349e50729b959c8c7f1643ff5eb7d98c3ba3041eb37bb23d567d0f2973</originalsourceid><addsrcrecordid>eNpdkl9v0zAUxSMEYt3gjWewkOCJDP9LbL8glbIC0ioQ3Z4tx7lpPSVxZidD_Qh8a1xajcGTJfvnc8-952bZC4LPCaHy_fxidY6pYCzH4lE2I1jJvGCsfJzNMFYqp5Tjk-w0xhuMMcelfJqdEMkpL3g5y34tdrZ1Fs1X3_NPMEBfQz-ihRlN5Vs3AvoBQ4AYne_RehdH6JBv0BpCMKMzqDPBQrTQR7SC2pkRIvrofOPaDi196BKUPo7b4KfNNmltpvZwlUSudgMggpauq4Iz8Cx70pg2wvPjeZZdLy-uFl_yy2-fvy7ml7ktKBlzKXgliGRcQYEFVZUqlJVWNKTkrGkKqEStpGWVYZgTqJioKsrqohQ1bqgS7Cz7cNAdpqqDOnkfg2n1EFxqZqe9cfrfl95t9cbfacopw7RMAm-PAsHfThBH3bk0grY1PfgpaoplWdJCJvD1f-CNn0KfmktMoYSgkiTo3QGywccYoLl3QrDeB6xTwPpPwBrv3b986P4vfEw0AW-OgInWtE0wvXXxnqOYpcLqgbmt22x_ugDaxE4b6LTgqa5mvNybe3WAGuO12YQkdL2mmLC0WWmZpGS_AQPqw3M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205977281</pqid></control><display><type>article</type><title>Cyclic AMP-Dependent Catabolite Repression System of Serratia marcescens Mediates Biofilm Formation through Regulation of Type 1 Fimbriae</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kalivoda, Eric J ; Stella, Nicholas A ; O'Dee, Dawn M ; Nau, Gerard J ; Shanks, Robert M.Q</creator><creatorcontrib>Kalivoda, Eric J ; Stella, Nicholas A ; O'Dee, Dawn M ; Nau, Gerard J ; Shanks, Robert M.Q</creatorcontrib><description>The mechanisms by which environmental carbon sources regulate biofilm formation are poorly understood. This study investigates the roles of glucose and the catabolite repression system in Serratia marcescens biofilm formation. The abilities of this opportunistic pathogen to proliferate in a wide range of environments, to cause disease, and to resist antimicrobials are linked to its ability to form biofilms. We observed that growth of S. marcescens in glucose-rich medium strongly stimulated biofilm formation, which contrasts with previous studies showing that biofilm formation is inhibited by glucose in Escherichia coli and other enteric bacteria. Glucose uptake is known to inversely mediate intracellular cyclic AMP (cAMP) synthesis through regulation of adenylate cyclase (cyaA) activity, which in turn controls fundamental processes such as motility, carbon utilization and storage, pathogenesis, and cell division in many bacteria. Here, we demonstrate that mutation of catabolite repression genes that regulate cAMP levels (crr and cyaA) or the ability to respond to cAMP (crp) confers a large increase in biofilm formation. Suppressor analysis revealed that phenotypes of a cAMP receptor protein (crp) mutant require the fimABCD operon, which is responsible for type 1 fimbria production. Consistently, fimA transcription and fimbria production were determined to be upregulated in a cyaA mutant background by using quantitative real-time reverse transcription-PCR and transmission electron microscopy analysis. The regulatory pathway by which environmental carbon sources influence cAMP concentrations to alter production of type 1 fimbrial adhesins establishes a novel mechanism by which bacteria control biofilm development.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.02733-07</identifier><identifier>PMID: 18424546</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Bacteria ; Bacterial Proteins - genetics ; Biofilms ; Biofilms - growth &amp; development ; Biological and medical sciences ; Cell division ; Cyclic AMP - metabolism ; Cyclic AMP Receptor Protein - genetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; Escherichia coli ; Fimbria ; Fimbriae, Bacterial - genetics ; Fimbriae, Bacterial - metabolism ; Fimbriae, Bacterial - ultrastructure ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Genetics and Molecular Biology ; Glucose - metabolism ; Microbiology ; Microscopy, Electron, Transmission ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutation ; Phosphoenolpyruvate Sugar Phosphotransferase System - genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Serratia marcescens ; Serratia marcescens - genetics ; Serratia marcescens - physiology ; Serratia marcescens - ultrastructure ; Studies ; Transmission electron microscopy</subject><ispartof>Applied and Environmental Microbiology, 2008-06, Vol.74 (11), p.3461-3470</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jun 2008</rights><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-874b718349e50729b959c8c7f1643ff5eb7d98c3ba3041eb37bb23d567d0f2973</citedby><cites>FETCH-LOGICAL-c521t-874b718349e50729b959c8c7f1643ff5eb7d98c3ba3041eb37bb23d567d0f2973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423026/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423026/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,313,314,723,776,780,788,881,3175,3176,27899,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20397798$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18424546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalivoda, Eric J</creatorcontrib><creatorcontrib>Stella, Nicholas A</creatorcontrib><creatorcontrib>O'Dee, Dawn M</creatorcontrib><creatorcontrib>Nau, Gerard J</creatorcontrib><creatorcontrib>Shanks, Robert M.Q</creatorcontrib><title>Cyclic AMP-Dependent Catabolite Repression System of Serratia marcescens Mediates Biofilm Formation through Regulation of Type 1 Fimbriae</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The mechanisms by which environmental carbon sources regulate biofilm formation are poorly understood. This study investigates the roles of glucose and the catabolite repression system in Serratia marcescens biofilm formation. The abilities of this opportunistic pathogen to proliferate in a wide range of environments, to cause disease, and to resist antimicrobials are linked to its ability to form biofilms. We observed that growth of S. marcescens in glucose-rich medium strongly stimulated biofilm formation, which contrasts with previous studies showing that biofilm formation is inhibited by glucose in Escherichia coli and other enteric bacteria. Glucose uptake is known to inversely mediate intracellular cyclic AMP (cAMP) synthesis through regulation of adenylate cyclase (cyaA) activity, which in turn controls fundamental processes such as motility, carbon utilization and storage, pathogenesis, and cell division in many bacteria. Here, we demonstrate that mutation of catabolite repression genes that regulate cAMP levels (crr and cyaA) or the ability to respond to cAMP (crp) confers a large increase in biofilm formation. Suppressor analysis revealed that phenotypes of a cAMP receptor protein (crp) mutant require the fimABCD operon, which is responsible for type 1 fimbria production. Consistently, fimA transcription and fimbria production were determined to be upregulated in a cyaA mutant background by using quantitative real-time reverse transcription-PCR and transmission electron microscopy analysis. The regulatory pathway by which environmental carbon sources influence cAMP concentrations to alter production of type 1 fimbrial adhesins establishes a novel mechanism by which bacteria control biofilm development.</description><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Cell division</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP Receptor Protein - genetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>Escherichia coli</subject><subject>Fimbria</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Fimbriae, Bacterial - metabolism</subject><subject>Fimbriae, Bacterial - ultrastructure</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetics and Molecular Biology</subject><subject>Glucose - metabolism</subject><subject>Microbiology</subject><subject>Microscopy, Electron, Transmission</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation</subject><subject>Phosphoenolpyruvate Sugar Phosphotransferase System - genetics</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sequence Analysis, DNA</subject><subject>Serratia marcescens</subject><subject>Serratia marcescens - genetics</subject><subject>Serratia marcescens - physiology</subject><subject>Serratia marcescens - ultrastructure</subject><subject>Studies</subject><subject>Transmission electron microscopy</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkl9v0zAUxSMEYt3gjWewkOCJDP9LbL8glbIC0ioQ3Z4tx7lpPSVxZidD_Qh8a1xajcGTJfvnc8-952bZC4LPCaHy_fxidY6pYCzH4lE2I1jJvGCsfJzNMFYqp5Tjk-w0xhuMMcelfJqdEMkpL3g5y34tdrZ1Fs1X3_NPMEBfQz-ihRlN5Vs3AvoBQ4AYne_RehdH6JBv0BpCMKMzqDPBQrTQR7SC2pkRIvrofOPaDi196BKUPo7b4KfNNmltpvZwlUSudgMggpauq4Iz8Cx70pg2wvPjeZZdLy-uFl_yy2-fvy7ml7ktKBlzKXgliGRcQYEFVZUqlJVWNKTkrGkKqEStpGWVYZgTqJioKsrqohQ1bqgS7Cz7cNAdpqqDOnkfg2n1EFxqZqe9cfrfl95t9cbfacopw7RMAm-PAsHfThBH3bk0grY1PfgpaoplWdJCJvD1f-CNn0KfmktMoYSgkiTo3QGywccYoLl3QrDeB6xTwPpPwBrv3b986P4vfEw0AW-OgInWtE0wvXXxnqOYpcLqgbmt22x_ugDaxE4b6LTgqa5mvNybe3WAGuO12YQkdL2mmLC0WWmZpGS_AQPqw3M</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Kalivoda, Eric J</creator><creator>Stella, Nicholas A</creator><creator>O'Dee, Dawn M</creator><creator>Nau, Gerard J</creator><creator>Shanks, Robert M.Q</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20080601</creationdate><title>Cyclic AMP-Dependent Catabolite Repression System of Serratia marcescens Mediates Biofilm Formation through Regulation of Type 1 Fimbriae</title><author>Kalivoda, Eric J ; Stella, Nicholas A ; O'Dee, Dawn M ; Nau, Gerard J ; Shanks, Robert M.Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-874b718349e50729b959c8c7f1643ff5eb7d98c3ba3041eb37bb23d567d0f2973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Cell division</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP Receptor Protein - genetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>Escherichia coli</topic><topic>Fimbria</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Fimbriae, Bacterial - metabolism</topic><topic>Fimbriae, Bacterial - ultrastructure</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetics and Molecular Biology</topic><topic>Glucose - metabolism</topic><topic>Microbiology</topic><topic>Microscopy, Electron, Transmission</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation</topic><topic>Phosphoenolpyruvate Sugar Phosphotransferase System - genetics</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sequence Analysis, DNA</topic><topic>Serratia marcescens</topic><topic>Serratia marcescens - genetics</topic><topic>Serratia marcescens - physiology</topic><topic>Serratia marcescens - ultrastructure</topic><topic>Studies</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalivoda, Eric J</creatorcontrib><creatorcontrib>Stella, Nicholas A</creatorcontrib><creatorcontrib>O'Dee, Dawn M</creatorcontrib><creatorcontrib>Nau, Gerard J</creatorcontrib><creatorcontrib>Shanks, Robert M.Q</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalivoda, Eric J</au><au>Stella, Nicholas A</au><au>O'Dee, Dawn M</au><au>Nau, Gerard J</au><au>Shanks, Robert M.Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic AMP-Dependent Catabolite Repression System of Serratia marcescens Mediates Biofilm Formation through Regulation of Type 1 Fimbriae</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-06-01</date><risdate>2008</risdate><volume>74</volume><issue>11</issue><spage>3461</spage><epage>3470</epage><pages>3461-3470</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>The mechanisms by which environmental carbon sources regulate biofilm formation are poorly understood. This study investigates the roles of glucose and the catabolite repression system in Serratia marcescens biofilm formation. The abilities of this opportunistic pathogen to proliferate in a wide range of environments, to cause disease, and to resist antimicrobials are linked to its ability to form biofilms. We observed that growth of S. marcescens in glucose-rich medium strongly stimulated biofilm formation, which contrasts with previous studies showing that biofilm formation is inhibited by glucose in Escherichia coli and other enteric bacteria. Glucose uptake is known to inversely mediate intracellular cyclic AMP (cAMP) synthesis through regulation of adenylate cyclase (cyaA) activity, which in turn controls fundamental processes such as motility, carbon utilization and storage, pathogenesis, and cell division in many bacteria. Here, we demonstrate that mutation of catabolite repression genes that regulate cAMP levels (crr and cyaA) or the ability to respond to cAMP (crp) confers a large increase in biofilm formation. Suppressor analysis revealed that phenotypes of a cAMP receptor protein (crp) mutant require the fimABCD operon, which is responsible for type 1 fimbria production. Consistently, fimA transcription and fimbria production were determined to be upregulated in a cyaA mutant background by using quantitative real-time reverse transcription-PCR and transmission electron microscopy analysis. The regulatory pathway by which environmental carbon sources influence cAMP concentrations to alter production of type 1 fimbrial adhesins establishes a novel mechanism by which bacteria control biofilm development.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18424546</pmid><doi>10.1128/AEM.02733-07</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2008-06, Vol.74 (11), p.3461-3470
issn 0099-2240
1098-5336
language eng
recordid cdi_crossref_primary_10_1128_AEM_02733_07
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Bacteria
Bacterial Proteins - genetics
Biofilms
Biofilms - growth & development
Biological and medical sciences
Cell division
Cyclic AMP - metabolism
Cyclic AMP Receptor Protein - genetics
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
Escherichia coli
Fimbria
Fimbriae, Bacterial - genetics
Fimbriae, Bacterial - metabolism
Fimbriae, Bacterial - ultrastructure
Fundamental and applied biological sciences. Psychology
Gene Deletion
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Genetics and Molecular Biology
Glucose - metabolism
Microbiology
Microscopy, Electron, Transmission
Molecular Sequence Data
Mutagenesis, Insertional
Mutation
Phosphoenolpyruvate Sugar Phosphotransferase System - genetics
Reverse Transcriptase Polymerase Chain Reaction
Sequence Analysis, DNA
Serratia marcescens
Serratia marcescens - genetics
Serratia marcescens - physiology
Serratia marcescens - ultrastructure
Studies
Transmission electron microscopy
title Cyclic AMP-Dependent Catabolite Repression System of Serratia marcescens Mediates Biofilm Formation through Regulation of Type 1 Fimbriae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20AMP-Dependent%20Catabolite%20Repression%20System%20of%20Serratia%20marcescens%20Mediates%20Biofilm%20Formation%20through%20Regulation%20of%20Type%201%20Fimbriae&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Kalivoda,%20Eric%20J&rft.date=2008-06-01&rft.volume=74&rft.issue=11&rft.spage=3461&rft.epage=3470&rft.pages=3461-3470&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.02733-07&rft_dat=%3Cproquest_cross%3E20866258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205977281&rft_id=info:pmid/18424546&rfr_iscdi=true