Structure of the human voltage-gated sodium channel Na v 1.4 in complex with β1

Voltage-gated sodium (Na ) channels, which are responsible for action potential generation, are implicated in many human diseases. Despite decades of rigorous characterization, the lack of a structure of any human Na channel has hampered mechanistic understanding. Here, we report the cryo-electron m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-10, Vol.362 (6412)
Hauptverfasser: Pan, Xiaojing, Li, Zhangqiang, Zhou, Qiang, Shen, Huaizong, Wu, Kun, Huang, Xiaoshuang, Chen, Jiaofeng, Zhang, Juanrong, Zhu, Xuechen, Lei, Jianlin, Xiong, Wei, Gong, Haipeng, Xiao, Bailong, Yan, Nieng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6412
container_start_page
container_title Science (American Association for the Advancement of Science)
container_volume 362
creator Pan, Xiaojing
Li, Zhangqiang
Zhou, Qiang
Shen, Huaizong
Wu, Kun
Huang, Xiaoshuang
Chen, Jiaofeng
Zhang, Juanrong
Zhu, Xuechen
Lei, Jianlin
Xiong, Wei
Gong, Haipeng
Xiao, Bailong
Yan, Nieng
description Voltage-gated sodium (Na ) channels, which are responsible for action potential generation, are implicated in many human diseases. Despite decades of rigorous characterization, the lack of a structure of any human Na channel has hampered mechanistic understanding. Here, we report the cryo-electron microscopy structure of the human Na 1.4-β1 complex at 3.2-Å resolution. Accurate model building was made for the pore domain, the voltage-sensing domains, and the β1 subunit, providing insight into the molecular basis for Na permeation and kinetic asymmetry of the four repeats. Structural analysis of reported functional residues and disease mutations corroborates an allosteric blocking mechanism for fast inactivation of Na channels. The structure provides a path toward mechanistic investigation of Na channels and drug discovery for Na channelopathies.
doi_str_mv 10.1126/science.aau2486
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1126_science_aau2486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30190309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1506-2004f29bbb5e9b2daaaa159370e20e2c51703aeb5450727f0dc53f763f271af43</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZofmB9KO7Tiul6jiJVWABKwjxxk3QXlUccLjt_gQvomgFkZXmsW9dzQ6jJ1znHMukkVwJTWO5tYOIl4mB2zK0ajICJSHbIook2iJWk3YSQiviKNn5DGbSOQGJZope3zqu8H1Q0fQeugLgmKobQNvbdXbDUUb21MOoc3LoQZX2KahCu4tvAGfx1A24Np6W9EHvJd9Ad9f_JQdeVsFOtvvGXu5vnpe3Ubrh5u71eU6clxhEgnE2AuTZZkik4ncjsPH5zSSGOUU1ygtZSpWqIX2mDslvU6kF5pbH8sZW-zuuq4NoSOfbruytt1nyjH9ZZPu2aR7NmPjYtfYDllN-X_-D4b8Ae4WYbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure of the human voltage-gated sodium channel Na v 1.4 in complex with β1</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Pan, Xiaojing ; Li, Zhangqiang ; Zhou, Qiang ; Shen, Huaizong ; Wu, Kun ; Huang, Xiaoshuang ; Chen, Jiaofeng ; Zhang, Juanrong ; Zhu, Xuechen ; Lei, Jianlin ; Xiong, Wei ; Gong, Haipeng ; Xiao, Bailong ; Yan, Nieng</creator><creatorcontrib>Pan, Xiaojing ; Li, Zhangqiang ; Zhou, Qiang ; Shen, Huaizong ; Wu, Kun ; Huang, Xiaoshuang ; Chen, Jiaofeng ; Zhang, Juanrong ; Zhu, Xuechen ; Lei, Jianlin ; Xiong, Wei ; Gong, Haipeng ; Xiao, Bailong ; Yan, Nieng</creatorcontrib><description>Voltage-gated sodium (Na ) channels, which are responsible for action potential generation, are implicated in many human diseases. Despite decades of rigorous characterization, the lack of a structure of any human Na channel has hampered mechanistic understanding. Here, we report the cryo-electron microscopy structure of the human Na 1.4-β1 complex at 3.2-Å resolution. Accurate model building was made for the pore domain, the voltage-sensing domains, and the β1 subunit, providing insight into the molecular basis for Na permeation and kinetic asymmetry of the four repeats. Structural analysis of reported functional residues and disease mutations corroborates an allosteric blocking mechanism for fast inactivation of Na channels. The structure provides a path toward mechanistic investigation of Na channels and drug discovery for Na channelopathies.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau2486</identifier><identifier>PMID: 30190309</identifier><language>eng</language><publisher>United States</publisher><subject>Allosteric Regulation ; Amino Acid Sequence ; Channelopathies - genetics ; Channelopathies - metabolism ; Cryoelectron Microscopy ; Drug Discovery ; HEK293 Cells ; Humans ; Mutation ; NAV1.4 Voltage-Gated Sodium Channel - chemistry ; NAV1.4 Voltage-Gated Sodium Channel - genetics ; NAV1.4 Voltage-Gated Sodium Channel - ultrastructure ; Protein Domains ; Voltage-Gated Sodium Channel beta-4 Subunit - chemistry ; Voltage-Gated Sodium Channel beta-4 Subunit - genetics ; Voltage-Gated Sodium Channel beta-4 Subunit - ultrastructure</subject><ispartof>Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412)</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1506-2004f29bbb5e9b2daaaa159370e20e2c51703aeb5450727f0dc53f763f271af43</citedby><cites>FETCH-LOGICAL-c1506-2004f29bbb5e9b2daaaa159370e20e2c51703aeb5450727f0dc53f763f271af43</cites><orcidid>0000-0003-1882-5361 ; 0000-0002-9384-8742 ; 0000-0002-3075-8272 ; 0000-0001-5003-8531 ; 0000-0002-6237-8813 ; 0000-0002-5532-1640 ; 0000-0003-4829-7416 ; 0000-0002-3296-2293 ; 0000-0002-1216-5393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30190309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Xiaojing</creatorcontrib><creatorcontrib>Li, Zhangqiang</creatorcontrib><creatorcontrib>Zhou, Qiang</creatorcontrib><creatorcontrib>Shen, Huaizong</creatorcontrib><creatorcontrib>Wu, Kun</creatorcontrib><creatorcontrib>Huang, Xiaoshuang</creatorcontrib><creatorcontrib>Chen, Jiaofeng</creatorcontrib><creatorcontrib>Zhang, Juanrong</creatorcontrib><creatorcontrib>Zhu, Xuechen</creatorcontrib><creatorcontrib>Lei, Jianlin</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Gong, Haipeng</creatorcontrib><creatorcontrib>Xiao, Bailong</creatorcontrib><creatorcontrib>Yan, Nieng</creatorcontrib><title>Structure of the human voltage-gated sodium channel Na v 1.4 in complex with β1</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Voltage-gated sodium (Na ) channels, which are responsible for action potential generation, are implicated in many human diseases. Despite decades of rigorous characterization, the lack of a structure of any human Na channel has hampered mechanistic understanding. Here, we report the cryo-electron microscopy structure of the human Na 1.4-β1 complex at 3.2-Å resolution. Accurate model building was made for the pore domain, the voltage-sensing domains, and the β1 subunit, providing insight into the molecular basis for Na permeation and kinetic asymmetry of the four repeats. Structural analysis of reported functional residues and disease mutations corroborates an allosteric blocking mechanism for fast inactivation of Na channels. The structure provides a path toward mechanistic investigation of Na channels and drug discovery for Na channelopathies.</description><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Channelopathies - genetics</subject><subject>Channelopathies - metabolism</subject><subject>Cryoelectron Microscopy</subject><subject>Drug Discovery</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Mutation</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - chemistry</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - ultrastructure</subject><subject>Protein Domains</subject><subject>Voltage-Gated Sodium Channel beta-4 Subunit - chemistry</subject><subject>Voltage-Gated Sodium Channel beta-4 Subunit - genetics</subject><subject>Voltage-Gated Sodium Channel beta-4 Subunit - ultrastructure</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EoqWwZofmB9KO7Tiul6jiJVWABKwjxxk3QXlUccLjt_gQvomgFkZXmsW9dzQ6jJ1znHMukkVwJTWO5tYOIl4mB2zK0ajICJSHbIook2iJWk3YSQiviKNn5DGbSOQGJZope3zqu8H1Q0fQeugLgmKobQNvbdXbDUUb21MOoc3LoQZX2KahCu4tvAGfx1A24Np6W9EHvJd9Ad9f_JQdeVsFOtvvGXu5vnpe3Ubrh5u71eU6clxhEgnE2AuTZZkik4ncjsPH5zSSGOUU1ygtZSpWqIX2mDslvU6kF5pbH8sZW-zuuq4NoSOfbruytt1nyjH9ZZPu2aR7NmPjYtfYDllN-X_-D4b8Ae4WYbw</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Pan, Xiaojing</creator><creator>Li, Zhangqiang</creator><creator>Zhou, Qiang</creator><creator>Shen, Huaizong</creator><creator>Wu, Kun</creator><creator>Huang, Xiaoshuang</creator><creator>Chen, Jiaofeng</creator><creator>Zhang, Juanrong</creator><creator>Zhu, Xuechen</creator><creator>Lei, Jianlin</creator><creator>Xiong, Wei</creator><creator>Gong, Haipeng</creator><creator>Xiao, Bailong</creator><creator>Yan, Nieng</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1882-5361</orcidid><orcidid>https://orcid.org/0000-0002-9384-8742</orcidid><orcidid>https://orcid.org/0000-0002-3075-8272</orcidid><orcidid>https://orcid.org/0000-0001-5003-8531</orcidid><orcidid>https://orcid.org/0000-0002-6237-8813</orcidid><orcidid>https://orcid.org/0000-0002-5532-1640</orcidid><orcidid>https://orcid.org/0000-0003-4829-7416</orcidid><orcidid>https://orcid.org/0000-0002-3296-2293</orcidid><orcidid>https://orcid.org/0000-0002-1216-5393</orcidid></search><sort><creationdate>20181019</creationdate><title>Structure of the human voltage-gated sodium channel Na v 1.4 in complex with β1</title><author>Pan, Xiaojing ; Li, Zhangqiang ; Zhou, Qiang ; Shen, Huaizong ; Wu, Kun ; Huang, Xiaoshuang ; Chen, Jiaofeng ; Zhang, Juanrong ; Zhu, Xuechen ; Lei, Jianlin ; Xiong, Wei ; Gong, Haipeng ; Xiao, Bailong ; Yan, Nieng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1506-2004f29bbb5e9b2daaaa159370e20e2c51703aeb5450727f0dc53f763f271af43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Channelopathies - genetics</topic><topic>Channelopathies - metabolism</topic><topic>Cryoelectron Microscopy</topic><topic>Drug Discovery</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Mutation</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - chemistry</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - ultrastructure</topic><topic>Protein Domains</topic><topic>Voltage-Gated Sodium Channel beta-4 Subunit - chemistry</topic><topic>Voltage-Gated Sodium Channel beta-4 Subunit - genetics</topic><topic>Voltage-Gated Sodium Channel beta-4 Subunit - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xiaojing</creatorcontrib><creatorcontrib>Li, Zhangqiang</creatorcontrib><creatorcontrib>Zhou, Qiang</creatorcontrib><creatorcontrib>Shen, Huaizong</creatorcontrib><creatorcontrib>Wu, Kun</creatorcontrib><creatorcontrib>Huang, Xiaoshuang</creatorcontrib><creatorcontrib>Chen, Jiaofeng</creatorcontrib><creatorcontrib>Zhang, Juanrong</creatorcontrib><creatorcontrib>Zhu, Xuechen</creatorcontrib><creatorcontrib>Lei, Jianlin</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Gong, Haipeng</creatorcontrib><creatorcontrib>Xiao, Bailong</creatorcontrib><creatorcontrib>Yan, Nieng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Xiaojing</au><au>Li, Zhangqiang</au><au>Zhou, Qiang</au><au>Shen, Huaizong</au><au>Wu, Kun</au><au>Huang, Xiaoshuang</au><au>Chen, Jiaofeng</au><au>Zhang, Juanrong</au><au>Zhu, Xuechen</au><au>Lei, Jianlin</au><au>Xiong, Wei</au><au>Gong, Haipeng</au><au>Xiao, Bailong</au><au>Yan, Nieng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the human voltage-gated sodium channel Na v 1.4 in complex with β1</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>362</volume><issue>6412</issue><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Voltage-gated sodium (Na ) channels, which are responsible for action potential generation, are implicated in many human diseases. Despite decades of rigorous characterization, the lack of a structure of any human Na channel has hampered mechanistic understanding. Here, we report the cryo-electron microscopy structure of the human Na 1.4-β1 complex at 3.2-Å resolution. Accurate model building was made for the pore domain, the voltage-sensing domains, and the β1 subunit, providing insight into the molecular basis for Na permeation and kinetic asymmetry of the four repeats. Structural analysis of reported functional residues and disease mutations corroborates an allosteric blocking mechanism for fast inactivation of Na channels. The structure provides a path toward mechanistic investigation of Na channels and drug discovery for Na channelopathies.</abstract><cop>United States</cop><pmid>30190309</pmid><doi>10.1126/science.aau2486</doi><orcidid>https://orcid.org/0000-0003-1882-5361</orcidid><orcidid>https://orcid.org/0000-0002-9384-8742</orcidid><orcidid>https://orcid.org/0000-0002-3075-8272</orcidid><orcidid>https://orcid.org/0000-0001-5003-8531</orcidid><orcidid>https://orcid.org/0000-0002-6237-8813</orcidid><orcidid>https://orcid.org/0000-0002-5532-1640</orcidid><orcidid>https://orcid.org/0000-0003-4829-7416</orcidid><orcidid>https://orcid.org/0000-0002-3296-2293</orcidid><orcidid>https://orcid.org/0000-0002-1216-5393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412)
issn 0036-8075
1095-9203
language eng
recordid cdi_crossref_primary_10_1126_science_aau2486
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Allosteric Regulation
Amino Acid Sequence
Channelopathies - genetics
Channelopathies - metabolism
Cryoelectron Microscopy
Drug Discovery
HEK293 Cells
Humans
Mutation
NAV1.4 Voltage-Gated Sodium Channel - chemistry
NAV1.4 Voltage-Gated Sodium Channel - genetics
NAV1.4 Voltage-Gated Sodium Channel - ultrastructure
Protein Domains
Voltage-Gated Sodium Channel beta-4 Subunit - chemistry
Voltage-Gated Sodium Channel beta-4 Subunit - genetics
Voltage-Gated Sodium Channel beta-4 Subunit - ultrastructure
title Structure of the human voltage-gated sodium channel Na v 1.4 in complex with β1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20human%20voltage-gated%20sodium%20channel%20Na%20v%201.4%20in%20complex%20with%20%CE%B21&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Pan,%20Xiaojing&rft.date=2018-10-19&rft.volume=362&rft.issue=6412&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau2486&rft_dat=%3Cpubmed_cross%3E30190309%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30190309&rfr_iscdi=true