Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces

Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-08, Vol.6 (34), p.eabb6763-eabb6763, Article 6763
Hauptverfasser: Chang, Raul A. Sun Han, Shanley, John F., Kersh, Mariana E., Harley, Brendan A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabb6763
container_issue 34
container_start_page eabb6763
container_title Science advances
container_volume 6
creator Chang, Raul A. Sun Han
Shanley, John F.
Kersh, Mariana E.
Harley, Brendan A. C.
description Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.
doi_str_mv 10.1126/sciadv.abb6763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1126_sciadv_abb6763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439627229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-34fbfea3e0a874341284e3844cd60ad40d7e0b81b64029fc383fb000e8ea020b3</originalsourceid><addsrcrecordid>eNqNkc1r3DAQxU1paUKSa4_Fx0LxVl-WtZdCWZomEMglPYuRPNpVK1tbSU7Jfx-V3S7pracZmN97M8NrmneUrChl8lO2HsbHFRgjB8lfNeeMD33HeqFev-jPmqucfxBCqJCyp-u3zRlnaugpFedNeIjLdtfCPLZlmcEEbLMF52IYu93TmOIWQ2vjtI_ZF2yNjxMUTB5C62Jqc3SlK7HbQRrbacl2CTH_xIClAsXnvGDr5ypwYDFfNm8chIxXx3rRfL_--rC56e7uv91uvtx1VvSydFw44xA4ElCD4IIyJZArIewoCYyCjAMSo6iRgrC1s1xxZ-p_qBAII4ZfNJ8PvvvFTDhanEuCoPfJT5CedASv_53Mfqe38VHXbYqooRp8OBqk-GvBXPTks8UQYMa4ZM0EX0s2MLau6OqA2hRzTuhOayjRf1LSh5T0MaUqeP_yuBP-N5MKfDwAv9FEV9U4Wzxh9c9eUsHkUDumKq3-n974AsXHeROXufBnvO20EQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439627229</pqid></control><display><type>article</type><title>Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chang, Raul A. Sun Han ; Shanley, John F. ; Kersh, Mariana E. ; Harley, Brendan A. C.</creator><creatorcontrib>Chang, Raul A. Sun Han ; Shanley, John F. ; Kersh, Mariana E. ; Harley, Brendan A. C.</creatorcontrib><description>Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abb6763</identifier><identifier>PMID: 32875114</identifier><language>eng</language><publisher>WASHINGTON: Amer Assoc Advancement Science</publisher><subject>Engineering ; Health and Medicine ; Multidisciplinary Sciences ; SciAdv r-articles ; Science &amp; Technology ; Science &amp; Technology - Other Topics</subject><ispartof>Science advances, 2020-08, Vol.6 (34), p.eabb6763-eabb6763, Article 6763</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>44</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000561426700028</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c456t-34fbfea3e0a874341284e3844cd60ad40d7e0b81b64029fc383fb000e8ea020b3</citedby><cites>FETCH-LOGICAL-c456t-34fbfea3e0a874341284e3844cd60ad40d7e0b81b64029fc383fb000e8ea020b3</cites><orcidid>0000-0001-5458-154X ; 0000-0003-4365-535X ; 0000-0002-6039-3577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438087/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438087/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2116,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32875114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Raul A. Sun Han</creatorcontrib><creatorcontrib>Shanley, John F.</creatorcontrib><creatorcontrib>Kersh, Mariana E.</creatorcontrib><creatorcontrib>Harley, Brendan A. C.</creatorcontrib><title>Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces</title><title>Science advances</title><addtitle>SCI ADV</addtitle><addtitle>Sci Adv</addtitle><description>Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.</description><subject>Engineering</subject><subject>Health and Medicine</subject><subject>Multidisciplinary Sciences</subject><subject>SciAdv r-articles</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1r3DAQxU1paUKSa4_Fx0LxVl-WtZdCWZomEMglPYuRPNpVK1tbSU7Jfx-V3S7pracZmN97M8NrmneUrChl8lO2HsbHFRgjB8lfNeeMD33HeqFev-jPmqucfxBCqJCyp-u3zRlnaugpFedNeIjLdtfCPLZlmcEEbLMF52IYu93TmOIWQ2vjtI_ZF2yNjxMUTB5C62Jqc3SlK7HbQRrbacl2CTH_xIClAsXnvGDr5ypwYDFfNm8chIxXx3rRfL_--rC56e7uv91uvtx1VvSydFw44xA4ElCD4IIyJZArIewoCYyCjAMSo6iRgrC1s1xxZ-p_qBAII4ZfNJ8PvvvFTDhanEuCoPfJT5CedASv_53Mfqe38VHXbYqooRp8OBqk-GvBXPTks8UQYMa4ZM0EX0s2MLau6OqA2hRzTuhOayjRf1LSh5T0MaUqeP_yuBP-N5MKfDwAv9FEV9U4Wzxh9c9eUsHkUDumKq3-n974AsXHeROXufBnvO20EQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chang, Raul A. Sun Han</creator><creator>Shanley, John F.</creator><creator>Kersh, Mariana E.</creator><creator>Harley, Brendan A. C.</creator><general>Amer Assoc Advancement Science</general><general>American Association for the Advancement of Science</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid><orcidid>https://orcid.org/0000-0003-4365-535X</orcidid><orcidid>https://orcid.org/0000-0002-6039-3577</orcidid></search><sort><creationdate>20200801</creationdate><title>Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces</title><author>Chang, Raul A. Sun Han ; Shanley, John F. ; Kersh, Mariana E. ; Harley, Brendan A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-34fbfea3e0a874341284e3844cd60ad40d7e0b81b64029fc383fb000e8ea020b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Health and Medicine</topic><topic>Multidisciplinary Sciences</topic><topic>SciAdv r-articles</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Raul A. Sun Han</creatorcontrib><creatorcontrib>Shanley, John F.</creatorcontrib><creatorcontrib>Kersh, Mariana E.</creatorcontrib><creatorcontrib>Harley, Brendan A. C.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Raul A. Sun Han</au><au>Shanley, John F.</au><au>Kersh, Mariana E.</au><au>Harley, Brendan A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces</atitle><jtitle>Science advances</jtitle><stitle>SCI ADV</stitle><addtitle>Sci Adv</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>6</volume><issue>34</issue><spage>eabb6763</spage><epage>eabb6763</epage><pages>eabb6763-eabb6763</pages><artnum>6763</artnum><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.</abstract><cop>WASHINGTON</cop><pub>Amer Assoc Advancement Science</pub><pmid>32875114</pmid><doi>10.1126/sciadv.abb6763</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid><orcidid>https://orcid.org/0000-0003-4365-535X</orcidid><orcidid>https://orcid.org/0000-0002-6039-3577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-08, Vol.6 (34), p.eabb6763-eabb6763, Article 6763
issn 2375-2548
2375-2548
language eng
recordid cdi_crossref_primary_10_1126_sciadv_abb6763
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Engineering
Health and Medicine
Multidisciplinary Sciences
SciAdv r-articles
Science & Technology
Science & Technology - Other Topics
title Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tough%20and%20tunable%20scaffold-hydrogel%20composite%20biomaterial%20for%20soft-to-hard%20musculoskeletal%20tissue%20interfaces&rft.jtitle=Science%20advances&rft.au=Chang,%20Raul%20A.%20Sun%20Han&rft.date=2020-08-01&rft.volume=6&rft.issue=34&rft.spage=eabb6763&rft.epage=eabb6763&rft.pages=eabb6763-eabb6763&rft.artnum=6763&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abb6763&rft_dat=%3Cproquest_cross%3E2439627229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439627229&rft_id=info:pmid/32875114&rfr_iscdi=true