Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces
Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-08, Vol.6 (34), p.eabb6763-eabb6763, Article 6763 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eabb6763 |
---|---|
container_issue | 34 |
container_start_page | eabb6763 |
container_title | Science advances |
container_volume | 6 |
creator | Chang, Raul A. Sun Han Shanley, John F. Kersh, Mariana E. Harley, Brendan A. C. |
description | Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions. |
doi_str_mv | 10.1126/sciadv.abb6763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1126_sciadv_abb6763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439627229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-34fbfea3e0a874341284e3844cd60ad40d7e0b81b64029fc383fb000e8ea020b3</originalsourceid><addsrcrecordid>eNqNkc1r3DAQxU1paUKSa4_Fx0LxVl-WtZdCWZomEMglPYuRPNpVK1tbSU7Jfx-V3S7pracZmN97M8NrmneUrChl8lO2HsbHFRgjB8lfNeeMD33HeqFev-jPmqucfxBCqJCyp-u3zRlnaugpFedNeIjLdtfCPLZlmcEEbLMF52IYu93TmOIWQ2vjtI_ZF2yNjxMUTB5C62Jqc3SlK7HbQRrbacl2CTH_xIClAsXnvGDr5ypwYDFfNm8chIxXx3rRfL_--rC56e7uv91uvtx1VvSydFw44xA4ElCD4IIyJZArIewoCYyCjAMSo6iRgrC1s1xxZ-p_qBAII4ZfNJ8PvvvFTDhanEuCoPfJT5CedASv_53Mfqe38VHXbYqooRp8OBqk-GvBXPTks8UQYMa4ZM0EX0s2MLau6OqA2hRzTuhOayjRf1LSh5T0MaUqeP_yuBP-N5MKfDwAv9FEV9U4Wzxh9c9eUsHkUDumKq3-n974AsXHeROXufBnvO20EQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439627229</pqid></control><display><type>article</type><title>Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chang, Raul A. Sun Han ; Shanley, John F. ; Kersh, Mariana E. ; Harley, Brendan A. C.</creator><creatorcontrib>Chang, Raul A. Sun Han ; Shanley, John F. ; Kersh, Mariana E. ; Harley, Brendan A. C.</creatorcontrib><description>Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abb6763</identifier><identifier>PMID: 32875114</identifier><language>eng</language><publisher>WASHINGTON: Amer Assoc Advancement Science</publisher><subject>Engineering ; Health and Medicine ; Multidisciplinary Sciences ; SciAdv r-articles ; Science & Technology ; Science & Technology - Other Topics</subject><ispartof>Science advances, 2020-08, Vol.6 (34), p.eabb6763-eabb6763, Article 6763</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>44</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000561426700028</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c456t-34fbfea3e0a874341284e3844cd60ad40d7e0b81b64029fc383fb000e8ea020b3</citedby><cites>FETCH-LOGICAL-c456t-34fbfea3e0a874341284e3844cd60ad40d7e0b81b64029fc383fb000e8ea020b3</cites><orcidid>0000-0001-5458-154X ; 0000-0003-4365-535X ; 0000-0002-6039-3577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438087/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438087/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2116,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32875114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Raul A. Sun Han</creatorcontrib><creatorcontrib>Shanley, John F.</creatorcontrib><creatorcontrib>Kersh, Mariana E.</creatorcontrib><creatorcontrib>Harley, Brendan A. C.</creatorcontrib><title>Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces</title><title>Science advances</title><addtitle>SCI ADV</addtitle><addtitle>Sci Adv</addtitle><description>Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.</description><subject>Engineering</subject><subject>Health and Medicine</subject><subject>Multidisciplinary Sciences</subject><subject>SciAdv r-articles</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1r3DAQxU1paUKSa4_Fx0LxVl-WtZdCWZomEMglPYuRPNpVK1tbSU7Jfx-V3S7pracZmN97M8NrmneUrChl8lO2HsbHFRgjB8lfNeeMD33HeqFev-jPmqucfxBCqJCyp-u3zRlnaugpFedNeIjLdtfCPLZlmcEEbLMF52IYu93TmOIWQ2vjtI_ZF2yNjxMUTB5C62Jqc3SlK7HbQRrbacl2CTH_xIClAsXnvGDr5ypwYDFfNm8chIxXx3rRfL_--rC56e7uv91uvtx1VvSydFw44xA4ElCD4IIyJZArIewoCYyCjAMSo6iRgrC1s1xxZ-p_qBAII4ZfNJ8PvvvFTDhanEuCoPfJT5CedASv_53Mfqe38VHXbYqooRp8OBqk-GvBXPTks8UQYMa4ZM0EX0s2MLau6OqA2hRzTuhOayjRf1LSh5T0MaUqeP_yuBP-N5MKfDwAv9FEV9U4Wzxh9c9eUsHkUDumKq3-n974AsXHeROXufBnvO20EQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chang, Raul A. Sun Han</creator><creator>Shanley, John F.</creator><creator>Kersh, Mariana E.</creator><creator>Harley, Brendan A. C.</creator><general>Amer Assoc Advancement Science</general><general>American Association for the Advancement of Science</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid><orcidid>https://orcid.org/0000-0003-4365-535X</orcidid><orcidid>https://orcid.org/0000-0002-6039-3577</orcidid></search><sort><creationdate>20200801</creationdate><title>Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces</title><author>Chang, Raul A. Sun Han ; Shanley, John F. ; Kersh, Mariana E. ; Harley, Brendan A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-34fbfea3e0a874341284e3844cd60ad40d7e0b81b64029fc383fb000e8ea020b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Health and Medicine</topic><topic>Multidisciplinary Sciences</topic><topic>SciAdv r-articles</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Raul A. Sun Han</creatorcontrib><creatorcontrib>Shanley, John F.</creatorcontrib><creatorcontrib>Kersh, Mariana E.</creatorcontrib><creatorcontrib>Harley, Brendan A. C.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Raul A. Sun Han</au><au>Shanley, John F.</au><au>Kersh, Mariana E.</au><au>Harley, Brendan A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces</atitle><jtitle>Science advances</jtitle><stitle>SCI ADV</stitle><addtitle>Sci Adv</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>6</volume><issue>34</issue><spage>eabb6763</spage><epage>eabb6763</epage><pages>eabb6763-eabb6763</pages><artnum>6763</artnum><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.</abstract><cop>WASHINGTON</cop><pub>Amer Assoc Advancement Science</pub><pmid>32875114</pmid><doi>10.1126/sciadv.abb6763</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid><orcidid>https://orcid.org/0000-0003-4365-535X</orcidid><orcidid>https://orcid.org/0000-0002-6039-3577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-08, Vol.6 (34), p.eabb6763-eabb6763, Article 6763 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_crossref_primary_10_1126_sciadv_abb6763 |
source | DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Engineering Health and Medicine Multidisciplinary Sciences SciAdv r-articles Science & Technology Science & Technology - Other Topics |
title | Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tough%20and%20tunable%20scaffold-hydrogel%20composite%20biomaterial%20for%20soft-to-hard%20musculoskeletal%20tissue%20interfaces&rft.jtitle=Science%20advances&rft.au=Chang,%20Raul%20A.%20Sun%20Han&rft.date=2020-08-01&rft.volume=6&rft.issue=34&rft.spage=eabb6763&rft.epage=eabb6763&rft.pages=eabb6763-eabb6763&rft.artnum=6763&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abb6763&rft_dat=%3Cproquest_cross%3E2439627229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439627229&rft_id=info:pmid/32875114&rfr_iscdi=true |