Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO 3 nanoformulation triggers ferroptosis in target tumor cells

The rapid development of treatment resistance in tumors poses a technological bottleneck in clinical oncology. Ferroptosis is a form of regulated cell death with clinical translational potential, but the efficacy of ferroptosis-inducing agents is susceptible to many endogenous factors when administe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-05, Vol.6 (18), p.eaax1346
Hauptverfasser: Xue, Chen-Cheng, Li, Meng-Huan, Zhao, Yang, Zhou, Jun, Hu, Yan, Cai, Kai-Yong, Zhao, Yanli, Yu, Shu-Hong, Luo, Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid development of treatment resistance in tumors poses a technological bottleneck in clinical oncology. Ferroptosis is a form of regulated cell death with clinical translational potential, but the efficacy of ferroptosis-inducing agents is susceptible to many endogenous factors when administered alone, for which some cooperating mechanisms are urgently required. Here, we report an amorphous calcium carbonate (ACC)-based nanoassembly for tumor-targeted ferroptosis therapy, in which the totally degradable ACC substrate could synergize with the therapeutic interaction between doxorubicin (DOX) and Fe . The nanoplatform was simultaneously modified by dendrimers with metalloproteinase-2 (MMP-2)-sheddable PEG or targeting ligands, which offers the functional balance between circulation longevity and tumor-specific uptake. The therapeutic cargo could be released intracellularly in a self-regulated manner through acidity-triggered degradation of ACC, where DOX could amplify the ferroptosis effects of Fe by producing H O . This nanoformulation has demonstrated potent ferroptosis efficacy and may offer clinical promise.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aax1346