Phospholipase C-β3 and -β1 Form Homodimers, but Not Heterodimers, through Catalytic and Carboxyl-Terminal Domains

Phospholipase C-β (PLC-β) isoenzymes are key effectors in G protein-coupled signaling pathways. Prior research suggests that some isoforms of PLC-β may exist and function as dimers. Using coimmunoprecipitation assays of differentially tagged PLC-β constructs and size-exclusion chromatography of nati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 2006-09, Vol.70 (3), p.860-868
Hauptverfasser: Zhang, Yong, Vogel, Walter K., McCullar, Jennifer S., Greenwood, Jeffrey A., Filtz, Theresa M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phospholipase C-β (PLC-β) isoenzymes are key effectors in G protein-coupled signaling pathways. Prior research suggests that some isoforms of PLC-β may exist and function as dimers. Using coimmunoprecipitation assays of differentially tagged PLC-β constructs and size-exclusion chromatography of native PLC-β, we observed homodimerization of PLC-β3 and PLC-β1 isoenzymes but failed to detect heterodimerization of these isoenzymes. Size-exclusion chromatography data suggest that PLC-β3 and PLC-β1 form higher affinity homodimers than PLC-β2. Evidence supportive of limited PLC-β monomer-homodimer equilibrium appears at ≤100 nM. Further assessment of homodimerization status by coimmunoprecipitation assays with differentially tagged PLC-β3 fragments demonstrated that at least two subdomains of PLC-β3 are involved in dimer formation, one in the catalytic X and Y domains and the other in the G protein-regulated carboxyl-terminal domain. In addition, we provide evidence consistent with the existence of PLC-β homodimers in a whole-cell context, using fluorescent protein-tagged constructs and microscopic fluorescence resonance energy transfer assays.
ISSN:0026-895X
DOI:10.1124/mol.105.021923