Unsupervised machine learning for acoustic tomography and event detection

We present acoustic tomography and event detection approaches based on unsupervised machine learning (ML). ML describes a set of techniques for automatically detecting and utilizing patterns in data. These techniques can roughly be categorized as either supervised or unsupervised learning. In superv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2019-10, Vol.146 (4), p.2845-2845
Hauptverfasser: Bianco, Michael J., Gerstoft, Peter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2845
container_issue 4
container_start_page 2845
container_title The Journal of the Acoustical Society of America
container_volume 146
creator Bianco, Michael J.
Gerstoft, Peter
description We present acoustic tomography and event detection approaches based on unsupervised machine learning (ML). ML describes a set of techniques for automatically detecting and utilizing patterns in data. These techniques can roughly be categorized as either supervised or unsupervised learning. In supervised learning, an ML system (e.g., neural network (NN)) is trained to produce a desired output based on labeled training examples. In unsupervised learning, no labels are given and the task is to discover interesting or useful structure within the data. In acoustic and geophysical signal processing, often large training datasets are available, but have few labeled examples. We discuss how unsupervised ML can leverage training data without explicit labels to improve acoustic models. We first give an overview of the relevant ML theory. Next, we describe an approach to array tomography, called locally-sparse travel time tomography (LST). LST regularizes the inversion of travel time measurements for geophysical structure using dictionary learning (unsupervised). Dictionary learning is here used to obtain a dictionary of small-scale geophysical features that best represent the measurements. Finally, we discuss an approach to automated event detection in acoustic time series based on autoencoder NNs, which learn salient features from NN inputs with unsupervised learning.
doi_str_mv 10.1121/1.5136868
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_5136868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1098-9a80977718a3470a449e3cde593505d068d57cb8edbd8e0300ce460927692de13</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoOFYX_kG2ClPfm0wyyVKK1kLBjV0PafLaRtrMkEwL_Xtb2rWry4XD5XIYe0YYI1b4hmOJQmmlb1iBsoJSy6q-ZQUAYFkbpe7ZQ86_pyq1MAWbLWLe95QOIZPnO-s2IRLfkk0xxDVfdYlb1-3zEBwful23TrbfHLmNntOB4sA9DeSG0MVHdrey20xP1xyxxefHz-SrnH9PZ5P3eekQjC6N1WCapkFtRd2ArWtDwnmSRkiQHpT2snFLTX7pNYEAcFQrMFWjTOUJxYi9XHZd6nJOtGr7FHY2HVuE9uygxfbq4MS-XtjswmDPL_-B_wB_Oluq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unsupervised machine learning for acoustic tomography and event detection</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Bianco, Michael J. ; Gerstoft, Peter</creator><creatorcontrib>Bianco, Michael J. ; Gerstoft, Peter</creatorcontrib><description>We present acoustic tomography and event detection approaches based on unsupervised machine learning (ML). ML describes a set of techniques for automatically detecting and utilizing patterns in data. These techniques can roughly be categorized as either supervised or unsupervised learning. In supervised learning, an ML system (e.g., neural network (NN)) is trained to produce a desired output based on labeled training examples. In unsupervised learning, no labels are given and the task is to discover interesting or useful structure within the data. In acoustic and geophysical signal processing, often large training datasets are available, but have few labeled examples. We discuss how unsupervised ML can leverage training data without explicit labels to improve acoustic models. We first give an overview of the relevant ML theory. Next, we describe an approach to array tomography, called locally-sparse travel time tomography (LST). LST regularizes the inversion of travel time measurements for geophysical structure using dictionary learning (unsupervised). Dictionary learning is here used to obtain a dictionary of small-scale geophysical features that best represent the measurements. Finally, we discuss an approach to automated event detection in acoustic time series based on autoencoder NNs, which learn salient features from NN inputs with unsupervised learning.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.5136868</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2019-10, Vol.146 (4), p.2845-2845</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1098-9a80977718a3470a449e3cde593505d068d57cb8edbd8e0300ce460927692de13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.5136868$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,777,781,791,1560,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Bianco, Michael J.</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><title>Unsupervised machine learning for acoustic tomography and event detection</title><title>The Journal of the Acoustical Society of America</title><description>We present acoustic tomography and event detection approaches based on unsupervised machine learning (ML). ML describes a set of techniques for automatically detecting and utilizing patterns in data. These techniques can roughly be categorized as either supervised or unsupervised learning. In supervised learning, an ML system (e.g., neural network (NN)) is trained to produce a desired output based on labeled training examples. In unsupervised learning, no labels are given and the task is to discover interesting or useful structure within the data. In acoustic and geophysical signal processing, often large training datasets are available, but have few labeled examples. We discuss how unsupervised ML can leverage training data without explicit labels to improve acoustic models. We first give an overview of the relevant ML theory. Next, we describe an approach to array tomography, called locally-sparse travel time tomography (LST). LST regularizes the inversion of travel time measurements for geophysical structure using dictionary learning (unsupervised). Dictionary learning is here used to obtain a dictionary of small-scale geophysical features that best represent the measurements. Finally, we discuss an approach to automated event detection in acoustic time series based on autoencoder NNs, which learn salient features from NN inputs with unsupervised learning.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoOFYX_kG2ClPfm0wyyVKK1kLBjV0PafLaRtrMkEwL_Xtb2rWry4XD5XIYe0YYI1b4hmOJQmmlb1iBsoJSy6q-ZQUAYFkbpe7ZQ86_pyq1MAWbLWLe95QOIZPnO-s2IRLfkk0xxDVfdYlb1-3zEBwful23TrbfHLmNntOB4sA9DeSG0MVHdrey20xP1xyxxefHz-SrnH9PZ5P3eekQjC6N1WCapkFtRd2ArWtDwnmSRkiQHpT2snFLTX7pNYEAcFQrMFWjTOUJxYi9XHZd6nJOtGr7FHY2HVuE9uygxfbq4MS-XtjswmDPL_-B_wB_Oluq</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Bianco, Michael J.</creator><creator>Gerstoft, Peter</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201910</creationdate><title>Unsupervised machine learning for acoustic tomography and event detection</title><author>Bianco, Michael J. ; Gerstoft, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1098-9a80977718a3470a449e3cde593505d068d57cb8edbd8e0300ce460927692de13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianco, Michael J.</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianco, Michael J.</au><au>Gerstoft, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised machine learning for acoustic tomography and event detection</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2019-10</date><risdate>2019</risdate><volume>146</volume><issue>4</issue><spage>2845</spage><epage>2845</epage><pages>2845-2845</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>We present acoustic tomography and event detection approaches based on unsupervised machine learning (ML). ML describes a set of techniques for automatically detecting and utilizing patterns in data. These techniques can roughly be categorized as either supervised or unsupervised learning. In supervised learning, an ML system (e.g., neural network (NN)) is trained to produce a desired output based on labeled training examples. In unsupervised learning, no labels are given and the task is to discover interesting or useful structure within the data. In acoustic and geophysical signal processing, often large training datasets are available, but have few labeled examples. We discuss how unsupervised ML can leverage training data without explicit labels to improve acoustic models. We first give an overview of the relevant ML theory. Next, we describe an approach to array tomography, called locally-sparse travel time tomography (LST). LST regularizes the inversion of travel time measurements for geophysical structure using dictionary learning (unsupervised). Dictionary learning is here used to obtain a dictionary of small-scale geophysical features that best represent the measurements. Finally, we discuss an approach to automated event detection in acoustic time series based on autoencoder NNs, which learn salient features from NN inputs with unsupervised learning.</abstract><doi>10.1121/1.5136868</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2019-10, Vol.146 (4), p.2845-2845
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_5136868
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Unsupervised machine learning for acoustic tomography and event detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20machine%20learning%20for%20acoustic%20tomography%20and%20event%20detection&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Bianco,%20Michael%20J.&rft.date=2019-10&rft.volume=146&rft.issue=4&rft.spage=2845&rft.epage=2845&rft.pages=2845-2845&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.5136868&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true