An evaluation of the automatically topology-generated auto-regressive hidden Markov model with regard to an esophageal voice enhancement task

An Auto-Regressive eXogenous (ARX) model combined with descriptive models of the glottal source waveform has been adopted to more accurately separate the vocal tract and the voicing source. However, these methods cannot be easily applied to the analysis of voices uttered by different speech producti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2016-10, Vol.140 (4), p.2964-2964
1. Verfasser: Sasou, Akira
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2964
container_issue 4
container_start_page 2964
container_title The Journal of the Acoustical Society of America
container_volume 140
creator Sasou, Akira
description An Auto-Regressive eXogenous (ARX) model combined with descriptive models of the glottal source waveform has been adopted to more accurately separate the vocal tract and the voicing source. However, these methods cannot be easily applied to the analysis of voices uttered by different speech production methods, such as esophageal voice. We previously proposed the voicing source hidden Markov model and an accompanying parameter estimation method. We refer to the model combining the HMM with an Auto-Regressive (AR) filter as AR-HMM. The proposed method automatically generates the optimum topology for the HMM using the minimum description length-based successive state splitting algorithm in order to simultaneously and accurately estimate the vocal tract and voicing source based on a voice excited by an unknown, aperiodic voicing source such as an esophageal voice. In this paper, we evaluate the perceived quality of the enhanced esophageal voices, which are synthesized by filtering the voicing source extracted from normal speakers with the AR filter extracted from the esophageal voices.
doi_str_mv 10.1121/1.4969164
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_4969164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1121_1_4969164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1094-909d4e07ade8079ca1eca3ca6a68b4a708123ca10068a942193fe3f028e24e743</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4A-8BSnFk7hJvKwqKEhFbGAdDc7kQZO4st2gfgT_jGm7ZjW6M0d3pMPYLYgZQAwPMJMqVZDKMzaBeSyifB7LczYRQkAUTuklu3LuK8R5nqgJ-1kMnEbsduhbM3BTcd8Qx503fdho7Lo992ZrOlPvo5oGsuipPACRpdqSc-1IvGnLkgb-inZjRt6bkjr-3fqGBwZtGSo4hkfObBusCTs-mlYTp6HBQVNPg-ce3eaaXVTYObo5zSn7eHp8Xz5H67fVy3KxjjQIJSMlVClJZFhSLjKlEUhjojHFNP-UmIkc4hBBiDRHJWNQSUVJJeKcYkmZTKbs7tirrXHOUlVsbduj3Rcgij-PBRQnj4G9P7JOt_5g6R_4F4OvdXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An evaluation of the automatically topology-generated auto-regressive hidden Markov model with regard to an esophageal voice enhancement task</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Sasou, Akira</creator><creatorcontrib>Sasou, Akira</creatorcontrib><description>An Auto-Regressive eXogenous (ARX) model combined with descriptive models of the glottal source waveform has been adopted to more accurately separate the vocal tract and the voicing source. However, these methods cannot be easily applied to the analysis of voices uttered by different speech production methods, such as esophageal voice. We previously proposed the voicing source hidden Markov model and an accompanying parameter estimation method. We refer to the model combining the HMM with an Auto-Regressive (AR) filter as AR-HMM. The proposed method automatically generates the optimum topology for the HMM using the minimum description length-based successive state splitting algorithm in order to simultaneously and accurately estimate the vocal tract and voicing source based on a voice excited by an unknown, aperiodic voicing source such as an esophageal voice. In this paper, we evaluate the perceived quality of the enhanced esophageal voices, which are synthesized by filtering the voicing source extracted from normal speakers with the AR filter extracted from the esophageal voices.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4969164</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2016-10, Vol.140 (4), p.2964-2964</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1094-909d4e07ade8079ca1eca3ca6a68b4a708123ca10068a942193fe3f028e24e743</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Sasou, Akira</creatorcontrib><title>An evaluation of the automatically topology-generated auto-regressive hidden Markov model with regard to an esophageal voice enhancement task</title><title>The Journal of the Acoustical Society of America</title><description>An Auto-Regressive eXogenous (ARX) model combined with descriptive models of the glottal source waveform has been adopted to more accurately separate the vocal tract and the voicing source. However, these methods cannot be easily applied to the analysis of voices uttered by different speech production methods, such as esophageal voice. We previously proposed the voicing source hidden Markov model and an accompanying parameter estimation method. We refer to the model combining the HMM with an Auto-Regressive (AR) filter as AR-HMM. The proposed method automatically generates the optimum topology for the HMM using the minimum description length-based successive state splitting algorithm in order to simultaneously and accurately estimate the vocal tract and voicing source based on a voice excited by an unknown, aperiodic voicing source such as an esophageal voice. In this paper, we evaluate the perceived quality of the enhanced esophageal voices, which are synthesized by filtering the voicing source extracted from normal speakers with the AR filter extracted from the esophageal voices.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4A-8BSnFk7hJvKwqKEhFbGAdDc7kQZO4st2gfgT_jGm7ZjW6M0d3pMPYLYgZQAwPMJMqVZDKMzaBeSyifB7LczYRQkAUTuklu3LuK8R5nqgJ-1kMnEbsduhbM3BTcd8Qx503fdho7Lo992ZrOlPvo5oGsuipPACRpdqSc-1IvGnLkgb-inZjRt6bkjr-3fqGBwZtGSo4hkfObBusCTs-mlYTp6HBQVNPg-ce3eaaXVTYObo5zSn7eHp8Xz5H67fVy3KxjjQIJSMlVClJZFhSLjKlEUhjojHFNP-UmIkc4hBBiDRHJWNQSUVJJeKcYkmZTKbs7tirrXHOUlVsbduj3Rcgij-PBRQnj4G9P7JOt_5g6R_4F4OvdXs</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Sasou, Akira</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201610</creationdate><title>An evaluation of the automatically topology-generated auto-regressive hidden Markov model with regard to an esophageal voice enhancement task</title><author>Sasou, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1094-909d4e07ade8079ca1eca3ca6a68b4a708123ca10068a942193fe3f028e24e743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasou, Akira</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasou, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of the automatically topology-generated auto-regressive hidden Markov model with regard to an esophageal voice enhancement task</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2016-10</date><risdate>2016</risdate><volume>140</volume><issue>4</issue><spage>2964</spage><epage>2964</epage><pages>2964-2964</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>An Auto-Regressive eXogenous (ARX) model combined with descriptive models of the glottal source waveform has been adopted to more accurately separate the vocal tract and the voicing source. However, these methods cannot be easily applied to the analysis of voices uttered by different speech production methods, such as esophageal voice. We previously proposed the voicing source hidden Markov model and an accompanying parameter estimation method. We refer to the model combining the HMM with an Auto-Regressive (AR) filter as AR-HMM. The proposed method automatically generates the optimum topology for the HMM using the minimum description length-based successive state splitting algorithm in order to simultaneously and accurately estimate the vocal tract and voicing source based on a voice excited by an unknown, aperiodic voicing source such as an esophageal voice. In this paper, we evaluate the perceived quality of the enhanced esophageal voices, which are synthesized by filtering the voicing source extracted from normal speakers with the AR filter extracted from the esophageal voices.</abstract><doi>10.1121/1.4969164</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2016-10, Vol.140 (4), p.2964-2964
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_4969164
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title An evaluation of the automatically topology-generated auto-regressive hidden Markov model with regard to an esophageal voice enhancement task
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20the%20automatically%20topology-generated%20auto-regressive%20hidden%20Markov%20model%20with%20regard%20to%20an%20esophageal%20voice%20enhancement%20task&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Sasou,%20Akira&rft.date=2016-10&rft.volume=140&rft.issue=4&rft.spage=2964&rft.epage=2964&rft.pages=2964-2964&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4969164&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1121_1_4969164%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true