Stress and energy transmission by inhomogeneous plane waves into dissipative media

The characteristics of sound transmission into real, or dissipative, media differ from those of transmission into lossless media. In particular, when a plane wave in a fluid is incident upon a real, dissipative elastic material, the transmitted waves are in general inhomogeneous, even when the incid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2015-09, Vol.138 (3_Supplement), p.1939-1940
Hauptverfasser: Woods, Daniel C., Bolton, J. Stuart, Rhoads, Jeffrey F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1940
container_issue 3_Supplement
container_start_page 1939
container_title The Journal of the Acoustical Society of America
container_volume 138
creator Woods, Daniel C.
Bolton, J. Stuart
Rhoads, Jeffrey F.
description The characteristics of sound transmission into real, or dissipative, media differ from those of transmission into lossless media. In particular, when a plane wave in a fluid is incident upon a real, dissipative elastic material, the transmitted waves are in general inhomogeneous, even when the incident wave is itself homogeneous and incident at a sub-critical angle; and more significantly, energy transmission occurs even above the critical angle. In addition, for any real incidence angle, the parameters of an incident inhomogeneous wave may be tuned so that there is no reflection from the surface of a viscoelastic solid. That phenomenon may be exploited in applications requiring energy transmission into solids. In this work, the transmission of incident inhomogeneous, as well as homogeneous, acoustic waves into solid materials is characterized; a hysteretic damping model is assumed. Numerical results are presented for the transmitted stress and energy distributions for typical solid materials, including polymer-based solids. The conditions for total transmission, i.e., no reflection at the interface, are explored, where the propagation angle, degree of inhomogeneity, and frequency of the incident wave are varied for a given material. These investigations show substantial transmission gains in the vicinity of the zero of the reflection coefficient, compared to homogeneous incident waves.
doi_str_mv 10.1121/1.4934124
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_4934124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_4934124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c694-ec51883525c566099f16a3ce5df85b6fbff21c0b9e4c503e580e9d387d00f3553</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0G2LqbmTnJjspTiCwqCdj9kkps60nmQjJX5906xq8PhO5zFx9gtiBVACfewUlYqKNUZWwCWojBYqnO2EEJAoazWl-wq5--5opF2wT4-x0Q5c9cFTh2l3cTH5LrcNjk3fcfriTfdV9_2u5n2P5kPe9cR_3UHyjMZex6Oy8GNzYF4S6Fx1-wiun2mm1Mu2fb5abt-LTbvL2_rx03htVUFeQRjJJboUWthbQTtpCcM0WCtYx1jCV7UlpRHIQmNIBukeQhCRIkol-zu_9anPudEsRpS07o0VSCqo4sKqpML-QfFZVHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stress and energy transmission by inhomogeneous plane waves into dissipative media</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Woods, Daniel C. ; Bolton, J. Stuart ; Rhoads, Jeffrey F.</creator><creatorcontrib>Woods, Daniel C. ; Bolton, J. Stuart ; Rhoads, Jeffrey F.</creatorcontrib><description>The characteristics of sound transmission into real, or dissipative, media differ from those of transmission into lossless media. In particular, when a plane wave in a fluid is incident upon a real, dissipative elastic material, the transmitted waves are in general inhomogeneous, even when the incident wave is itself homogeneous and incident at a sub-critical angle; and more significantly, energy transmission occurs even above the critical angle. In addition, for any real incidence angle, the parameters of an incident inhomogeneous wave may be tuned so that there is no reflection from the surface of a viscoelastic solid. That phenomenon may be exploited in applications requiring energy transmission into solids. In this work, the transmission of incident inhomogeneous, as well as homogeneous, acoustic waves into solid materials is characterized; a hysteretic damping model is assumed. Numerical results are presented for the transmitted stress and energy distributions for typical solid materials, including polymer-based solids. The conditions for total transmission, i.e., no reflection at the interface, are explored, where the propagation angle, degree of inhomogeneity, and frequency of the incident wave are varied for a given material. These investigations show substantial transmission gains in the vicinity of the zero of the reflection coefficient, compared to homogeneous incident waves.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4934124</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2015-09, Vol.138 (3_Supplement), p.1939-1940</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Woods, Daniel C.</creatorcontrib><creatorcontrib>Bolton, J. Stuart</creatorcontrib><creatorcontrib>Rhoads, Jeffrey F.</creatorcontrib><title>Stress and energy transmission by inhomogeneous plane waves into dissipative media</title><title>The Journal of the Acoustical Society of America</title><description>The characteristics of sound transmission into real, or dissipative, media differ from those of transmission into lossless media. In particular, when a plane wave in a fluid is incident upon a real, dissipative elastic material, the transmitted waves are in general inhomogeneous, even when the incident wave is itself homogeneous and incident at a sub-critical angle; and more significantly, energy transmission occurs even above the critical angle. In addition, for any real incidence angle, the parameters of an incident inhomogeneous wave may be tuned so that there is no reflection from the surface of a viscoelastic solid. That phenomenon may be exploited in applications requiring energy transmission into solids. In this work, the transmission of incident inhomogeneous, as well as homogeneous, acoustic waves into solid materials is characterized; a hysteretic damping model is assumed. Numerical results are presented for the transmitted stress and energy distributions for typical solid materials, including polymer-based solids. The conditions for total transmission, i.e., no reflection at the interface, are explored, where the propagation angle, degree of inhomogeneity, and frequency of the incident wave are varied for a given material. These investigations show substantial transmission gains in the vicinity of the zero of the reflection coefficient, compared to homogeneous incident waves.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0G2LqbmTnJjspTiCwqCdj9kkps60nmQjJX5906xq8PhO5zFx9gtiBVACfewUlYqKNUZWwCWojBYqnO2EEJAoazWl-wq5--5opF2wT4-x0Q5c9cFTh2l3cTH5LrcNjk3fcfriTfdV9_2u5n2P5kPe9cR_3UHyjMZex6Oy8GNzYF4S6Fx1-wiun2mm1Mu2fb5abt-LTbvL2_rx03htVUFeQRjJJboUWthbQTtpCcM0WCtYx1jCV7UlpRHIQmNIBukeQhCRIkol-zu_9anPudEsRpS07o0VSCqo4sKqpML-QfFZVHw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Woods, Daniel C.</creator><creator>Bolton, J. Stuart</creator><creator>Rhoads, Jeffrey F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150901</creationdate><title>Stress and energy transmission by inhomogeneous plane waves into dissipative media</title><author>Woods, Daniel C. ; Bolton, J. Stuart ; Rhoads, Jeffrey F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c694-ec51883525c566099f16a3ce5df85b6fbff21c0b9e4c503e580e9d387d00f3553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Daniel C.</creatorcontrib><creatorcontrib>Bolton, J. Stuart</creatorcontrib><creatorcontrib>Rhoads, Jeffrey F.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Daniel C.</au><au>Bolton, J. Stuart</au><au>Rhoads, Jeffrey F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress and energy transmission by inhomogeneous plane waves into dissipative media</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>138</volume><issue>3_Supplement</issue><spage>1939</spage><epage>1940</epage><pages>1939-1940</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>The characteristics of sound transmission into real, or dissipative, media differ from those of transmission into lossless media. In particular, when a plane wave in a fluid is incident upon a real, dissipative elastic material, the transmitted waves are in general inhomogeneous, even when the incident wave is itself homogeneous and incident at a sub-critical angle; and more significantly, energy transmission occurs even above the critical angle. In addition, for any real incidence angle, the parameters of an incident inhomogeneous wave may be tuned so that there is no reflection from the surface of a viscoelastic solid. That phenomenon may be exploited in applications requiring energy transmission into solids. In this work, the transmission of incident inhomogeneous, as well as homogeneous, acoustic waves into solid materials is characterized; a hysteretic damping model is assumed. Numerical results are presented for the transmitted stress and energy distributions for typical solid materials, including polymer-based solids. The conditions for total transmission, i.e., no reflection at the interface, are explored, where the propagation angle, degree of inhomogeneity, and frequency of the incident wave are varied for a given material. These investigations show substantial transmission gains in the vicinity of the zero of the reflection coefficient, compared to homogeneous incident waves.</abstract><doi>10.1121/1.4934124</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2015-09, Vol.138 (3_Supplement), p.1939-1940
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_4934124
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection; AIP Acoustical Society of America
title Stress and energy transmission by inhomogeneous plane waves into dissipative media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20and%20energy%20transmission%20by%20inhomogeneous%20plane%20waves%20into%20dissipative%20media&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Woods,%20Daniel%20C.&rft.date=2015-09-01&rft.volume=138&rft.issue=3_Supplement&rft.spage=1939&rft.epage=1940&rft.pages=1939-1940&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.4934124&rft_dat=%3Ccrossref%3E10_1121_1_4934124%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true