Modeling of tension-modulated strings using finite difference and digital waveguide techniques

Tension modulation is a nonlinear phenomenon where large-amplitude string vibrations cause the tension of the string to vary. This results in an initial pitch glide and energy coupling between modes, causing for example the generation of missing harmonics. The presentation discusses two methods for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2005-09, Vol.118 (3_Supplement), p.1974-1974
1. Verfasser: Pakarinen, Jyri
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1974
container_issue 3_Supplement
container_start_page 1974
container_title The Journal of the Acoustical Society of America
container_volume 118
creator Pakarinen, Jyri
description Tension modulation is a nonlinear phenomenon where large-amplitude string vibrations cause the tension of the string to vary. This results in an initial pitch glide and energy coupling between modes, causing for example the generation of missing harmonics. The presentation discusses two methods for numerical simulation of the tension modulation nonlinearity from the sound synthesis point of view. The tension modulation is assumed to propagate instantaneously along the string. In the digital waveguide approach, spatially distributed fractional delay filters are used in modulating the string length during run time. Energy-preserving techniques can be used in implementing the fractional delays. In the finite difference approach, time-domain interpolation is used to artificially modulate the wave propagation velocity. The generation of missing harmonics is implemented in the finite difference model by creating an additional excitation point at the string termination. In the waveguide model, the same effect can be obtained by using suitable approximations in the string elongation calculation. Synthesis results for both techniques are presented. Also, a brief comparison of the models with a discussion on stability issues is provided. [This research has been funded by the Academy of Finland (Project No. 104934), S3TK graduate school, and Tekniikan edistamissaatio.]
doi_str_mv 10.1121/1.4781858
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_4781858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_4781858</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1121_1_47818583</originalsourceid><addsrcrecordid>eNqVj8FuwjAQRC3USqQtB_7A1x5CvSEBc66KuHDjjGXF67Ao2K3XoerfN0j8AKfR0zyNNELMQS0AKviARb3WoBs9EQU0lSp1U9VPolBKQVlvVqupeGE-j9jo5aYQx3102FPoZPQyY2CKobxEN_Q2o5Oc09ixHPimeAqUUTryHhOGFqUNbsSOsu3lr71iN5DDcac9BfoZkN_Es7c94-yer-J9-3X43JVtiswJvflOdLHpz4AytwMGzP3A8hH3H4f9TJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of tension-modulated strings using finite difference and digital waveguide techniques</title><source>AIP Journals Complete</source><source>Acoustical Society of America (AIP)</source><creator>Pakarinen, Jyri</creator><creatorcontrib>Pakarinen, Jyri</creatorcontrib><description>Tension modulation is a nonlinear phenomenon where large-amplitude string vibrations cause the tension of the string to vary. This results in an initial pitch glide and energy coupling between modes, causing for example the generation of missing harmonics. The presentation discusses two methods for numerical simulation of the tension modulation nonlinearity from the sound synthesis point of view. The tension modulation is assumed to propagate instantaneously along the string. In the digital waveguide approach, spatially distributed fractional delay filters are used in modulating the string length during run time. Energy-preserving techniques can be used in implementing the fractional delays. In the finite difference approach, time-domain interpolation is used to artificially modulate the wave propagation velocity. The generation of missing harmonics is implemented in the finite difference model by creating an additional excitation point at the string termination. In the waveguide model, the same effect can be obtained by using suitable approximations in the string elongation calculation. Synthesis results for both techniques are presented. Also, a brief comparison of the models with a discussion on stability issues is provided. [This research has been funded by the Academy of Finland (Project No. 104934), S3TK graduate school, and Tekniikan edistamissaatio.]</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4781858</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2005-09, Vol.118 (3_Supplement), p.1974-1974</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pakarinen, Jyri</creatorcontrib><title>Modeling of tension-modulated strings using finite difference and digital waveguide techniques</title><title>The Journal of the Acoustical Society of America</title><description>Tension modulation is a nonlinear phenomenon where large-amplitude string vibrations cause the tension of the string to vary. This results in an initial pitch glide and energy coupling between modes, causing for example the generation of missing harmonics. The presentation discusses two methods for numerical simulation of the tension modulation nonlinearity from the sound synthesis point of view. The tension modulation is assumed to propagate instantaneously along the string. In the digital waveguide approach, spatially distributed fractional delay filters are used in modulating the string length during run time. Energy-preserving techniques can be used in implementing the fractional delays. In the finite difference approach, time-domain interpolation is used to artificially modulate the wave propagation velocity. The generation of missing harmonics is implemented in the finite difference model by creating an additional excitation point at the string termination. In the waveguide model, the same effect can be obtained by using suitable approximations in the string elongation calculation. Synthesis results for both techniques are presented. Also, a brief comparison of the models with a discussion on stability issues is provided. [This research has been funded by the Academy of Finland (Project No. 104934), S3TK graduate school, and Tekniikan edistamissaatio.]</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqVj8FuwjAQRC3USqQtB_7A1x5CvSEBc66KuHDjjGXF67Ao2K3XoerfN0j8AKfR0zyNNELMQS0AKviARb3WoBs9EQU0lSp1U9VPolBKQVlvVqupeGE-j9jo5aYQx3102FPoZPQyY2CKobxEN_Q2o5Oc09ixHPimeAqUUTryHhOGFqUNbsSOsu3lr71iN5DDcac9BfoZkN_Es7c94-yer-J9-3X43JVtiswJvflOdLHpz4AytwMGzP3A8hH3H4f9TJw</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Pakarinen, Jyri</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050901</creationdate><title>Modeling of tension-modulated strings using finite difference and digital waveguide techniques</title><author>Pakarinen, Jyri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1121_1_47818583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pakarinen, Jyri</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakarinen, Jyri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of tension-modulated strings using finite difference and digital waveguide techniques</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>118</volume><issue>3_Supplement</issue><spage>1974</spage><epage>1974</epage><pages>1974-1974</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Tension modulation is a nonlinear phenomenon where large-amplitude string vibrations cause the tension of the string to vary. This results in an initial pitch glide and energy coupling between modes, causing for example the generation of missing harmonics. The presentation discusses two methods for numerical simulation of the tension modulation nonlinearity from the sound synthesis point of view. The tension modulation is assumed to propagate instantaneously along the string. In the digital waveguide approach, spatially distributed fractional delay filters are used in modulating the string length during run time. Energy-preserving techniques can be used in implementing the fractional delays. In the finite difference approach, time-domain interpolation is used to artificially modulate the wave propagation velocity. The generation of missing harmonics is implemented in the finite difference model by creating an additional excitation point at the string termination. In the waveguide model, the same effect can be obtained by using suitable approximations in the string elongation calculation. Synthesis results for both techniques are presented. Also, a brief comparison of the models with a discussion on stability issues is provided. [This research has been funded by the Academy of Finland (Project No. 104934), S3TK graduate school, and Tekniikan edistamissaatio.]</abstract><doi>10.1121/1.4781858</doi></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2005-09, Vol.118 (3_Supplement), p.1974-1974
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_4781858
source AIP Journals Complete; Acoustical Society of America (AIP)
title Modeling of tension-modulated strings using finite difference and digital waveguide techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20tension-modulated%20strings%20using%20finite%20difference%20and%20digital%20waveguide%20techniques&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Pakarinen,%20Jyri&rft.date=2005-09-01&rft.volume=118&rft.issue=3_Supplement&rft.spage=1974&rft.epage=1974&rft.pages=1974-1974&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.4781858&rft_dat=%3Ccrossref%3E10_1121_1_4781858%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true