Numerical modeling of inert gas-condensing vapor thermoacoustic engines

Recent theoretical work by Slaton and Raspet et al. describe the acoustic propagation equation [J. Acoust. Soc. Am. 114, 1414–1422] and the second-order enthalpy and mass transport equations [J. Acoust. Soc. Am. 114, 1423–1430] for an inert gas-condensing vapor mixture in a porous medium with an imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2003-04, Vol.113 (4_Supplement), p.2268-2268
Hauptverfasser: Slaton, W. V., Raspet, Richard, Hiller, Robert A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2268
container_issue 4_Supplement
container_start_page 2268
container_title The Journal of the Acoustical Society of America
container_volume 113
creator Slaton, W. V.
Raspet, Richard
Hiller, Robert A.
description Recent theoretical work by Slaton and Raspet et al. describe the acoustic propagation equation [J. Acoust. Soc. Am. 114, 1414–1422] and the second-order enthalpy and mass transport equations [J. Acoust. Soc. Am. 114, 1423–1430] for an inert gas-condensing vapor mixture in a porous medium with an imposed temperature gradient. The acoustic propagation and enthalpy transport equations show that the vapor diffusion effects in the mixture are analogous to the heat diffusion effects in the thermoacoustics of inert gases, and that these effects occur in parallel with the heat diffusion effects in the wet system for proper choice of inert gas and vapor. Writing the acoustic propagation equation as two coupled first-order differential equations in terms of the volumetric velocity and acoustic pressure amplitude and utilizing the conservation of enthalpy in the stack allows the system of equations to be solved numerically by interfacing with the well-established thermoacoustic modeling code, DeltaE. Modeling of various thermoacoustic engines utilizing an inert gas-condensing vapor working fluid will be presented. It will be shown how the COP relative to Carnot and the heat pumping power for thermoacoustic refrigerators can be increased significantly by proper choice of gas mixture. [Work supported by ONR.]
doi_str_mv 10.1121/1.4780510
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_4780510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_4780510</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1121_1_47805103</originalsourceid><addsrcrecordid>eNqVjrsOgjAYRhujiXgZfIOuDmh_bsJsvExO7k1TCtbQlvQHE99eSHgBpy_nyxkOITtgB4AIjnBITjlLgc1IAGnEwjyNkjkJGGMQJkWWLckK8T1gmsdFQG6P3iivpWiocaVqtK2pq6i2yne0FhhKZ0tlcfw_onWedi_ljRPS9dhpSZWtBxk3ZFGJBtV22jXZXy_P8z2U3iF6VfHWayP8lwPjYykHPpXG_7g_IHJDsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical modeling of inert gas-condensing vapor thermoacoustic engines</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Slaton, W. V. ; Raspet, Richard ; Hiller, Robert A.</creator><creatorcontrib>Slaton, W. V. ; Raspet, Richard ; Hiller, Robert A.</creatorcontrib><description>Recent theoretical work by Slaton and Raspet et al. describe the acoustic propagation equation [J. Acoust. Soc. Am. 114, 1414–1422] and the second-order enthalpy and mass transport equations [J. Acoust. Soc. Am. 114, 1423–1430] for an inert gas-condensing vapor mixture in a porous medium with an imposed temperature gradient. The acoustic propagation and enthalpy transport equations show that the vapor diffusion effects in the mixture are analogous to the heat diffusion effects in the thermoacoustics of inert gases, and that these effects occur in parallel with the heat diffusion effects in the wet system for proper choice of inert gas and vapor. Writing the acoustic propagation equation as two coupled first-order differential equations in terms of the volumetric velocity and acoustic pressure amplitude and utilizing the conservation of enthalpy in the stack allows the system of equations to be solved numerically by interfacing with the well-established thermoacoustic modeling code, DeltaE. Modeling of various thermoacoustic engines utilizing an inert gas-condensing vapor working fluid will be presented. It will be shown how the COP relative to Carnot and the heat pumping power for thermoacoustic refrigerators can be increased significantly by proper choice of gas mixture. [Work supported by ONR.]</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4780510</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2003-04, Vol.113 (4_Supplement), p.2268-2268</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Slaton, W. V.</creatorcontrib><creatorcontrib>Raspet, Richard</creatorcontrib><creatorcontrib>Hiller, Robert A.</creatorcontrib><title>Numerical modeling of inert gas-condensing vapor thermoacoustic engines</title><title>The Journal of the Acoustical Society of America</title><description>Recent theoretical work by Slaton and Raspet et al. describe the acoustic propagation equation [J. Acoust. Soc. Am. 114, 1414–1422] and the second-order enthalpy and mass transport equations [J. Acoust. Soc. Am. 114, 1423–1430] for an inert gas-condensing vapor mixture in a porous medium with an imposed temperature gradient. The acoustic propagation and enthalpy transport equations show that the vapor diffusion effects in the mixture are analogous to the heat diffusion effects in the thermoacoustics of inert gases, and that these effects occur in parallel with the heat diffusion effects in the wet system for proper choice of inert gas and vapor. Writing the acoustic propagation equation as two coupled first-order differential equations in terms of the volumetric velocity and acoustic pressure amplitude and utilizing the conservation of enthalpy in the stack allows the system of equations to be solved numerically by interfacing with the well-established thermoacoustic modeling code, DeltaE. Modeling of various thermoacoustic engines utilizing an inert gas-condensing vapor working fluid will be presented. It will be shown how the COP relative to Carnot and the heat pumping power for thermoacoustic refrigerators can be increased significantly by proper choice of gas mixture. [Work supported by ONR.]</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqVjrsOgjAYRhujiXgZfIOuDmh_bsJsvExO7k1TCtbQlvQHE99eSHgBpy_nyxkOITtgB4AIjnBITjlLgc1IAGnEwjyNkjkJGGMQJkWWLckK8T1gmsdFQG6P3iivpWiocaVqtK2pq6i2yne0FhhKZ0tlcfw_onWedi_ljRPS9dhpSZWtBxk3ZFGJBtV22jXZXy_P8z2U3iF6VfHWayP8lwPjYykHPpXG_7g_IHJDsQ</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Slaton, W. V.</creator><creator>Raspet, Richard</creator><creator>Hiller, Robert A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030401</creationdate><title>Numerical modeling of inert gas-condensing vapor thermoacoustic engines</title><author>Slaton, W. V. ; Raspet, Richard ; Hiller, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1121_1_47805103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slaton, W. V.</creatorcontrib><creatorcontrib>Raspet, Richard</creatorcontrib><creatorcontrib>Hiller, Robert A.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slaton, W. V.</au><au>Raspet, Richard</au><au>Hiller, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of inert gas-condensing vapor thermoacoustic engines</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>113</volume><issue>4_Supplement</issue><spage>2268</spage><epage>2268</epage><pages>2268-2268</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Recent theoretical work by Slaton and Raspet et al. describe the acoustic propagation equation [J. Acoust. Soc. Am. 114, 1414–1422] and the second-order enthalpy and mass transport equations [J. Acoust. Soc. Am. 114, 1423–1430] for an inert gas-condensing vapor mixture in a porous medium with an imposed temperature gradient. The acoustic propagation and enthalpy transport equations show that the vapor diffusion effects in the mixture are analogous to the heat diffusion effects in the thermoacoustics of inert gases, and that these effects occur in parallel with the heat diffusion effects in the wet system for proper choice of inert gas and vapor. Writing the acoustic propagation equation as two coupled first-order differential equations in terms of the volumetric velocity and acoustic pressure amplitude and utilizing the conservation of enthalpy in the stack allows the system of equations to be solved numerically by interfacing with the well-established thermoacoustic modeling code, DeltaE. Modeling of various thermoacoustic engines utilizing an inert gas-condensing vapor working fluid will be presented. It will be shown how the COP relative to Carnot and the heat pumping power for thermoacoustic refrigerators can be increased significantly by proper choice of gas mixture. [Work supported by ONR.]</abstract><doi>10.1121/1.4780510</doi></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2003-04, Vol.113 (4_Supplement), p.2268-2268
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_4780510
source AIP Journals Complete; AIP Acoustical Society of America
title Numerical modeling of inert gas-condensing vapor thermoacoustic engines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20inert%20gas-condensing%20vapor%20thermoacoustic%20engines&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Slaton,%20W.%20V.&rft.date=2003-04-01&rft.volume=113&rft.issue=4_Supplement&rft.spage=2268&rft.epage=2268&rft.pages=2268-2268&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.4780510&rft_dat=%3Ccrossref%3E10_1121_1_4780510%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true