Thermoacoustic boundary layers near the liquid–vapor critical point

The sound attenuation in resonators filled with xenon at its critical density ρc was calculated and measured as a function of the reduced temperature τ≡(T−Tc)/Tc. (Tc is the critical temperature.) Over the temperature and frequency ranges of the measurements [10−3

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2004-05, Vol.115 (5_Supplement), p.2380-2380
Hauptverfasser: Gillis, Keith A., Shinder, Iosif I., Moldover, Michael R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2380
container_issue 5_Supplement
container_start_page 2380
container_title The Journal of the Acoustical Society of America
container_volume 115
creator Gillis, Keith A.
Shinder, Iosif I.
Moldover, Michael R.
description The sound attenuation in resonators filled with xenon at its critical density ρc was calculated and measured as a function of the reduced temperature τ≡(T−Tc)/Tc. (Tc is the critical temperature.) Over the temperature and frequency ranges of the measurements [10−3
doi_str_mv 10.1121/1.4780233
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_4780233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_4780233</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1121_1_47802333</originalsourceid><addsrcrecordid>eNqVjksOgjAURRujifgZuINOHYB9_ISxwbgA500tJdQAxVcwYeYe3KErERM24OjmJicnh5AdMA_AhwN44TFhfhDMiAORz9wk8sM5cRhj4IZpHC_Jytr7eKMkSB2SXUuFtRHS9LbTkt5M3-QCB1qJQaGljRJIu1LRSj96nX9e76doDVKJesRFRVujm25DFoWorNpOuyb7c3Y9XVyJxlpUBW9R16OWA-O_Tg586gz-Yb8hcEQD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoacoustic boundary layers near the liquid–vapor critical point</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Gillis, Keith A. ; Shinder, Iosif I. ; Moldover, Michael R.</creator><creatorcontrib>Gillis, Keith A. ; Shinder, Iosif I. ; Moldover, Michael R.</creatorcontrib><description>The sound attenuation in resonators filled with xenon at its critical density ρc was calculated and measured as a function of the reduced temperature τ≡(T−Tc)/Tc. (Tc is the critical temperature.) Over the temperature and frequency ranges of the measurements [10−3&lt;τ&lt;10−1, 0.1 kHz&lt;f&lt;7.5 kHz], the attenuation was dominated by the thermal boundary layer. The model predicts that the attenuation at the boundary first increases as τ decreases and then saturates when the effusivity of the xenon exceeds that of the solid. [The effusivity is ε≡√ρCPλT, where CP is the isobaric specific heat and λT is the thermal conductivity.] The model correctly predicts (±1.0%) the quality factors Q of resonances measured in a steel resonator (εss=6400 kg⋅K−1⋅s−5/2); it also predicts the observed increase of the Q, by up to a factor of 8, when the resonator is coated with a polymer (εpr=370 kg⋅K−1⋅s−5/2). The thickness δT of the thermal boundary layer in the xenon decreases as τ decreases until 2πfγζ/(ρc2)≊1. (ζ is the bulk viscosity, γ is the heat capacity ratio, and c is the speed of sound.) For smaller τ, δT is predicted to become complex and increase. [Work supported by NASA.]</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4780233</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2004-05, Vol.115 (5_Supplement), p.2380-2380</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gillis, Keith A.</creatorcontrib><creatorcontrib>Shinder, Iosif I.</creatorcontrib><creatorcontrib>Moldover, Michael R.</creatorcontrib><title>Thermoacoustic boundary layers near the liquid–vapor critical point</title><title>The Journal of the Acoustical Society of America</title><description>The sound attenuation in resonators filled with xenon at its critical density ρc was calculated and measured as a function of the reduced temperature τ≡(T−Tc)/Tc. (Tc is the critical temperature.) Over the temperature and frequency ranges of the measurements [10−3&lt;τ&lt;10−1, 0.1 kHz&lt;f&lt;7.5 kHz], the attenuation was dominated by the thermal boundary layer. The model predicts that the attenuation at the boundary first increases as τ decreases and then saturates when the effusivity of the xenon exceeds that of the solid. [The effusivity is ε≡√ρCPλT, where CP is the isobaric specific heat and λT is the thermal conductivity.] The model correctly predicts (±1.0%) the quality factors Q of resonances measured in a steel resonator (εss=6400 kg⋅K−1⋅s−5/2); it also predicts the observed increase of the Q, by up to a factor of 8, when the resonator is coated with a polymer (εpr=370 kg⋅K−1⋅s−5/2). The thickness δT of the thermal boundary layer in the xenon decreases as τ decreases until 2πfγζ/(ρc2)≊1. (ζ is the bulk viscosity, γ is the heat capacity ratio, and c is the speed of sound.) For smaller τ, δT is predicted to become complex and increase. [Work supported by NASA.]</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqVjksOgjAURRujifgZuINOHYB9_ISxwbgA500tJdQAxVcwYeYe3KErERM24OjmJicnh5AdMA_AhwN44TFhfhDMiAORz9wk8sM5cRhj4IZpHC_Jytr7eKMkSB2SXUuFtRHS9LbTkt5M3-QCB1qJQaGljRJIu1LRSj96nX9e76doDVKJesRFRVujm25DFoWorNpOuyb7c3Y9XVyJxlpUBW9R16OWA-O_Tg586gz-Yb8hcEQD</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Gillis, Keith A.</creator><creator>Shinder, Iosif I.</creator><creator>Moldover, Michael R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040501</creationdate><title>Thermoacoustic boundary layers near the liquid–vapor critical point</title><author>Gillis, Keith A. ; Shinder, Iosif I. ; Moldover, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1121_1_47802333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillis, Keith A.</creatorcontrib><creatorcontrib>Shinder, Iosif I.</creatorcontrib><creatorcontrib>Moldover, Michael R.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillis, Keith A.</au><au>Shinder, Iosif I.</au><au>Moldover, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoacoustic boundary layers near the liquid–vapor critical point</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>115</volume><issue>5_Supplement</issue><spage>2380</spage><epage>2380</epage><pages>2380-2380</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>The sound attenuation in resonators filled with xenon at its critical density ρc was calculated and measured as a function of the reduced temperature τ≡(T−Tc)/Tc. (Tc is the critical temperature.) Over the temperature and frequency ranges of the measurements [10−3&lt;τ&lt;10−1, 0.1 kHz&lt;f&lt;7.5 kHz], the attenuation was dominated by the thermal boundary layer. The model predicts that the attenuation at the boundary first increases as τ decreases and then saturates when the effusivity of the xenon exceeds that of the solid. [The effusivity is ε≡√ρCPλT, where CP is the isobaric specific heat and λT is the thermal conductivity.] The model correctly predicts (±1.0%) the quality factors Q of resonances measured in a steel resonator (εss=6400 kg⋅K−1⋅s−5/2); it also predicts the observed increase of the Q, by up to a factor of 8, when the resonator is coated with a polymer (εpr=370 kg⋅K−1⋅s−5/2). The thickness δT of the thermal boundary layer in the xenon decreases as τ decreases until 2πfγζ/(ρc2)≊1. (ζ is the bulk viscosity, γ is the heat capacity ratio, and c is the speed of sound.) For smaller τ, δT is predicted to become complex and increase. [Work supported by NASA.]</abstract><doi>10.1121/1.4780233</doi></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2004-05, Vol.115 (5_Supplement), p.2380-2380
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_4780233
source AIP Journals Complete; AIP Acoustical Society of America
title Thermoacoustic boundary layers near the liquid–vapor critical point
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoacoustic%20boundary%20layers%20near%20the%20liquid%E2%80%93vapor%20critical%20point&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Gillis,%20Keith%20A.&rft.date=2004-05-01&rft.volume=115&rft.issue=5_Supplement&rft.spage=2380&rft.epage=2380&rft.pages=2380-2380&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.4780233&rft_dat=%3Ccrossref%3E10_1121_1_4780233%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true