Waves in rotating conducting piezoelectric media

The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1999-08, Vol.106 (2), p.626-636
1. Verfasser: Wauer, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue 2
container_start_page 626
container_title The Journal of the Acoustical Society of America
container_volume 106
creator Wauer, J.
description The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completion, a generalized thermoelastic theory of piezoelectric bodies is incorporated. The governing dispersion relations are obtained to determine the effects of moderate rotation, thermal, and constant electrical conductivity on the finite phase velocity of the waves. Analysis is carried out for plane waves in an infinite medium but also for surface waves of a half-space. Finally, the radial vibrations of a hollow cylinder are addressed. The evaluations are specified for hexagonal crystals of (6 mm) class and a simple arrangement of the direction of wave propagation and the crystal and rotational axes.
doi_str_mv 10.1121/1.427082
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_427082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_427082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-5d65842463840f3d72a1b6f57b0049ffca4ad4ccc4210f047e17005f6b57972a3</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMoWHcFf0KPXrq-b_ImaY-y-AULXpQ9hjQfEtltl6QK-uutrqeZgWGYh7ErhBUixxtcEdfQ8hNWoeTQtJLTKasAABvqlDpnF6W8z1G2oqsYbO1nKHUa6jxOdkrDW-3GwX-4P3tI4XsMu-CmnFy9Dz7ZJTuLdlfC5b8u2Ov93cv6sdk8PzytbzeN41xOjfRKtsRJiZYgCq-5xV5FqXsA6mJ0lqwn5xxxhAikA-r5U1S91N1cFgt2fdx1eSwlh2gOOe1t_jII5pfUoDmSih8gw0Q8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Waves in rotating conducting piezoelectric media</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Wauer, J.</creator><creatorcontrib>Wauer, J.</creatorcontrib><description>The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completion, a generalized thermoelastic theory of piezoelectric bodies is incorporated. The governing dispersion relations are obtained to determine the effects of moderate rotation, thermal, and constant electrical conductivity on the finite phase velocity of the waves. Analysis is carried out for plane waves in an infinite medium but also for surface waves of a half-space. Finally, the radial vibrations of a hollow cylinder are addressed. The evaluations are specified for hexagonal crystals of (6 mm) class and a simple arrangement of the direction of wave propagation and the crystal and rotational axes.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.427082</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1999-08, Vol.106 (2), p.626-636</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-5d65842463840f3d72a1b6f57b0049ffca4ad4ccc4210f047e17005f6b57972a3</citedby><cites>FETCH-LOGICAL-c225t-5d65842463840f3d72a1b6f57b0049ffca4ad4ccc4210f047e17005f6b57972a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wauer, J.</creatorcontrib><title>Waves in rotating conducting piezoelectric media</title><title>The Journal of the Acoustical Society of America</title><description>The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completion, a generalized thermoelastic theory of piezoelectric bodies is incorporated. The governing dispersion relations are obtained to determine the effects of moderate rotation, thermal, and constant electrical conductivity on the finite phase velocity of the waves. Analysis is carried out for plane waves in an infinite medium but also for surface waves of a half-space. Finally, the radial vibrations of a hollow cylinder are addressed. The evaluations are specified for hexagonal crystals of (6 mm) class and a simple arrangement of the direction of wave propagation and the crystal and rotational axes.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotj01LxDAYhIMoWHcFf0KPXrq-b_ImaY-y-AULXpQ9hjQfEtltl6QK-uutrqeZgWGYh7ErhBUixxtcEdfQ8hNWoeTQtJLTKasAABvqlDpnF6W8z1G2oqsYbO1nKHUa6jxOdkrDW-3GwX-4P3tI4XsMu-CmnFy9Dz7ZJTuLdlfC5b8u2Ov93cv6sdk8PzytbzeN41xOjfRKtsRJiZYgCq-5xV5FqXsA6mJ0lqwn5xxxhAikA-r5U1S91N1cFgt2fdx1eSwlh2gOOe1t_jII5pfUoDmSih8gw0Q8</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Wauer, J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990801</creationdate><title>Waves in rotating conducting piezoelectric media</title><author>Wauer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-5d65842463840f3d72a1b6f57b0049ffca4ad4ccc4210f047e17005f6b57972a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wauer, J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wauer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waves in rotating conducting piezoelectric media</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>106</volume><issue>2</issue><spage>626</spage><epage>636</epage><pages>626-636</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completion, a generalized thermoelastic theory of piezoelectric bodies is incorporated. The governing dispersion relations are obtained to determine the effects of moderate rotation, thermal, and constant electrical conductivity on the finite phase velocity of the waves. Analysis is carried out for plane waves in an infinite medium but also for surface waves of a half-space. Finally, the radial vibrations of a hollow cylinder are addressed. The evaluations are specified for hexagonal crystals of (6 mm) class and a simple arrangement of the direction of wave propagation and the crystal and rotational axes.</abstract><doi>10.1121/1.427082</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1999-08, Vol.106 (2), p.626-636
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_427082
source AIP Journals Complete; AIP Acoustical Society of America
title Waves in rotating conducting piezoelectric media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waves%20in%20rotating%20conducting%20piezoelectric%20media&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Wauer,%20J.&rft.date=1999-08-01&rft.volume=106&rft.issue=2&rft.spage=626&rft.epage=636&rft.pages=626-636&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.427082&rft_dat=%3Ccrossref%3E10_1121_1_427082%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true