Waves in rotating conducting piezoelectric media
The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completi...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 1999-08, Vol.106 (2), p.626-636 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 636 |
---|---|
container_issue | 2 |
container_start_page | 626 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 106 |
creator | Wauer, J. |
description | The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completion, a generalized thermoelastic theory of piezoelectric bodies is incorporated. The governing dispersion relations are obtained to determine the effects of moderate rotation, thermal, and constant electrical conductivity on the finite phase velocity of the waves. Analysis is carried out for plane waves in an infinite medium but also for surface waves of a half-space. Finally, the radial vibrations of a hollow cylinder are addressed. The evaluations are specified for hexagonal crystals of (6 mm) class and a simple arrangement of the direction of wave propagation and the crystal and rotational axes. |
doi_str_mv | 10.1121/1.427082 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_427082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_427082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-5d65842463840f3d72a1b6f57b0049ffca4ad4ccc4210f047e17005f6b57972a3</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMoWHcFf0KPXrq-b_ImaY-y-AULXpQ9hjQfEtltl6QK-uutrqeZgWGYh7ErhBUixxtcEdfQ8hNWoeTQtJLTKasAABvqlDpnF6W8z1G2oqsYbO1nKHUa6jxOdkrDW-3GwX-4P3tI4XsMu-CmnFy9Dz7ZJTuLdlfC5b8u2Ov93cv6sdk8PzytbzeN41xOjfRKtsRJiZYgCq-5xV5FqXsA6mJ0lqwn5xxxhAikA-r5U1S91N1cFgt2fdx1eSwlh2gOOe1t_jII5pfUoDmSih8gw0Q8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Waves in rotating conducting piezoelectric media</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Wauer, J.</creator><creatorcontrib>Wauer, J.</creatorcontrib><description>The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completion, a generalized thermoelastic theory of piezoelectric bodies is incorporated. The governing dispersion relations are obtained to determine the effects of moderate rotation, thermal, and constant electrical conductivity on the finite phase velocity of the waves. Analysis is carried out for plane waves in an infinite medium but also for surface waves of a half-space. Finally, the radial vibrations of a hollow cylinder are addressed. The evaluations are specified for hexagonal crystals of (6 mm) class and a simple arrangement of the direction of wave propagation and the crystal and rotational axes.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.427082</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1999-08, Vol.106 (2), p.626-636</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-5d65842463840f3d72a1b6f57b0049ffca4ad4ccc4210f047e17005f6b57972a3</citedby><cites>FETCH-LOGICAL-c225t-5d65842463840f3d72a1b6f57b0049ffca4ad4ccc4210f047e17005f6b57972a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wauer, J.</creatorcontrib><title>Waves in rotating conducting piezoelectric media</title><title>The Journal of the Acoustical Society of America</title><description>The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completion, a generalized thermoelastic theory of piezoelectric bodies is incorporated. The governing dispersion relations are obtained to determine the effects of moderate rotation, thermal, and constant electrical conductivity on the finite phase velocity of the waves. Analysis is carried out for plane waves in an infinite medium but also for surface waves of a half-space. Finally, the radial vibrations of a hollow cylinder are addressed. The evaluations are specified for hexagonal crystals of (6 mm) class and a simple arrangement of the direction of wave propagation and the crystal and rotational axes.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotj01LxDAYhIMoWHcFf0KPXrq-b_ImaY-y-AULXpQ9hjQfEtltl6QK-uutrqeZgWGYh7ErhBUixxtcEdfQ8hNWoeTQtJLTKasAABvqlDpnF6W8z1G2oqsYbO1nKHUa6jxOdkrDW-3GwX-4P3tI4XsMu-CmnFy9Dz7ZJTuLdlfC5b8u2Ov93cv6sdk8PzytbzeN41xOjfRKtsRJiZYgCq-5xV5FqXsA6mJ0lqwn5xxxhAikA-r5U1S91N1cFgt2fdx1eSwlh2gOOe1t_jII5pfUoDmSih8gw0Q8</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Wauer, J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990801</creationdate><title>Waves in rotating conducting piezoelectric media</title><author>Wauer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-5d65842463840f3d72a1b6f57b0049ffca4ad4ccc4210f047e17005f6b57972a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wauer, J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wauer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waves in rotating conducting piezoelectric media</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>106</volume><issue>2</issue><spage>626</spage><epage>636</epage><pages>626-636</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>The propagation of waves in a conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform angular velocity. For comparison, both the conventional electrically quasistatic theory and the fully dynamic Maxwell equations are taken into consideration. In completion, a generalized thermoelastic theory of piezoelectric bodies is incorporated. The governing dispersion relations are obtained to determine the effects of moderate rotation, thermal, and constant electrical conductivity on the finite phase velocity of the waves. Analysis is carried out for plane waves in an infinite medium but also for surface waves of a half-space. Finally, the radial vibrations of a hollow cylinder are addressed. The evaluations are specified for hexagonal crystals of (6 mm) class and a simple arrangement of the direction of wave propagation and the crystal and rotational axes.</abstract><doi>10.1121/1.427082</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 1999-08, Vol.106 (2), p.626-636 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_crossref_primary_10_1121_1_427082 |
source | AIP Journals Complete; AIP Acoustical Society of America |
title | Waves in rotating conducting piezoelectric media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waves%20in%20rotating%20conducting%20piezoelectric%20media&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Wauer,%20J.&rft.date=1999-08-01&rft.volume=106&rft.issue=2&rft.spage=626&rft.epage=636&rft.pages=626-636&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.427082&rft_dat=%3Ccrossref%3E10_1121_1_427082%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |