Hybrid discrete vortex method (DVM)/boundary element method (BEM) calculations for cavity acoustics

A hybrid computational methodology has been developed for cavity acoustics applications. The method utilizes a discrete vortex method coupled to an acoustic boundary element calculation. The discrete vortex method uses a Lagrangian evolution in time and space of a field of Gaussian distributed vorte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1999-02, Vol.105 (2_Supplement), p.1372-1372
Hauptverfasser: Epstein, Ronald J., Leonard, Anthony, Cain, Alan B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1372
container_issue 2_Supplement
container_start_page 1372
container_title The Journal of the Acoustical Society of America
container_volume 105
creator Epstein, Ronald J.
Leonard, Anthony
Cain, Alan B.
description A hybrid computational methodology has been developed for cavity acoustics applications. The method utilizes a discrete vortex method coupled to an acoustic boundary element calculation. The discrete vortex method uses a Lagrangian evolution in time and space of a field of Gaussian distributed vortex blobs to simulate a two-dimensional, time-dependent, vorticity dominated shear layer. The method yields accurate and fast unsteady solutions to the time-dependent nonlinear flow equations. The cavity acoustics is modeled using acoustic boundary elements which are distributed on the surface of the cavity geometry. The vortex simulation of the shear layer is coupled to the boundary element calculation through Neumann boundary conditions imposed on the cavity surface. The hybrid method simulates a shear layer interacting with a cavity at low Mach number. In example calculations, acoustic radiation and far-field directivity patterns are calculated for the two-dimensional cavity/shear layer system.
doi_str_mv 10.1121/1.426495
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_426495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_426495</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1121_1_4264953</originalsourceid><addsrcrecordid>eNqVjztrwzAUhUVpIW4byE_QGA-Odf3CXtM6ZMlWugpZvqYKtlV05RD_-7q0ZM90OA8OfIxtQOwAEohhlyVFVuUPLIA8EVGZJ9kjC4QQEGVVUazYM9F5sXmZVgHTx7lxpuWtIe3QI79Y5_HKB_RftuXb989TGDd2GlvlZo49Djj6W7uvTyHXqtdTr7yxI_HOuiW4GD9zpe1E3mh6ZU-d6gnX__rCtof64-0YaWeJHHby25lh-Zcg5C-EBPkHkd4x_QFvB0w4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid discrete vortex method (DVM)/boundary element method (BEM) calculations for cavity acoustics</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Epstein, Ronald J. ; Leonard, Anthony ; Cain, Alan B.</creator><creatorcontrib>Epstein, Ronald J. ; Leonard, Anthony ; Cain, Alan B.</creatorcontrib><description>A hybrid computational methodology has been developed for cavity acoustics applications. The method utilizes a discrete vortex method coupled to an acoustic boundary element calculation. The discrete vortex method uses a Lagrangian evolution in time and space of a field of Gaussian distributed vortex blobs to simulate a two-dimensional, time-dependent, vorticity dominated shear layer. The method yields accurate and fast unsteady solutions to the time-dependent nonlinear flow equations. The cavity acoustics is modeled using acoustic boundary elements which are distributed on the surface of the cavity geometry. The vortex simulation of the shear layer is coupled to the boundary element calculation through Neumann boundary conditions imposed on the cavity surface. The hybrid method simulates a shear layer interacting with a cavity at low Mach number. In example calculations, acoustic radiation and far-field directivity patterns are calculated for the two-dimensional cavity/shear layer system.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.426495</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1999-02, Vol.105 (2_Supplement), p.1372-1372</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Epstein, Ronald J.</creatorcontrib><creatorcontrib>Leonard, Anthony</creatorcontrib><creatorcontrib>Cain, Alan B.</creatorcontrib><title>Hybrid discrete vortex method (DVM)/boundary element method (BEM) calculations for cavity acoustics</title><title>The Journal of the Acoustical Society of America</title><description>A hybrid computational methodology has been developed for cavity acoustics applications. The method utilizes a discrete vortex method coupled to an acoustic boundary element calculation. The discrete vortex method uses a Lagrangian evolution in time and space of a field of Gaussian distributed vortex blobs to simulate a two-dimensional, time-dependent, vorticity dominated shear layer. The method yields accurate and fast unsteady solutions to the time-dependent nonlinear flow equations. The cavity acoustics is modeled using acoustic boundary elements which are distributed on the surface of the cavity geometry. The vortex simulation of the shear layer is coupled to the boundary element calculation through Neumann boundary conditions imposed on the cavity surface. The hybrid method simulates a shear layer interacting with a cavity at low Mach number. In example calculations, acoustic radiation and far-field directivity patterns are calculated for the two-dimensional cavity/shear layer system.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqVjztrwzAUhUVpIW4byE_QGA-Odf3CXtM6ZMlWugpZvqYKtlV05RD_-7q0ZM90OA8OfIxtQOwAEohhlyVFVuUPLIA8EVGZJ9kjC4QQEGVVUazYM9F5sXmZVgHTx7lxpuWtIe3QI79Y5_HKB_RftuXb989TGDd2GlvlZo49Djj6W7uvTyHXqtdTr7yxI_HOuiW4GD9zpe1E3mh6ZU-d6gnX__rCtof64-0YaWeJHHby25lh-Zcg5C-EBPkHkd4x_QFvB0w4</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Epstein, Ronald J.</creator><creator>Leonard, Anthony</creator><creator>Cain, Alan B.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990201</creationdate><title>Hybrid discrete vortex method (DVM)/boundary element method (BEM) calculations for cavity acoustics</title><author>Epstein, Ronald J. ; Leonard, Anthony ; Cain, Alan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1121_1_4264953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epstein, Ronald J.</creatorcontrib><creatorcontrib>Leonard, Anthony</creatorcontrib><creatorcontrib>Cain, Alan B.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epstein, Ronald J.</au><au>Leonard, Anthony</au><au>Cain, Alan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid discrete vortex method (DVM)/boundary element method (BEM) calculations for cavity acoustics</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1999-02-01</date><risdate>1999</risdate><volume>105</volume><issue>2_Supplement</issue><spage>1372</spage><epage>1372</epage><pages>1372-1372</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>A hybrid computational methodology has been developed for cavity acoustics applications. The method utilizes a discrete vortex method coupled to an acoustic boundary element calculation. The discrete vortex method uses a Lagrangian evolution in time and space of a field of Gaussian distributed vortex blobs to simulate a two-dimensional, time-dependent, vorticity dominated shear layer. The method yields accurate and fast unsteady solutions to the time-dependent nonlinear flow equations. The cavity acoustics is modeled using acoustic boundary elements which are distributed on the surface of the cavity geometry. The vortex simulation of the shear layer is coupled to the boundary element calculation through Neumann boundary conditions imposed on the cavity surface. The hybrid method simulates a shear layer interacting with a cavity at low Mach number. In example calculations, acoustic radiation and far-field directivity patterns are calculated for the two-dimensional cavity/shear layer system.</abstract><doi>10.1121/1.426495</doi></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1999-02, Vol.105 (2_Supplement), p.1372-1372
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_426495
source AIP Journals Complete; AIP Acoustical Society of America
title Hybrid discrete vortex method (DVM)/boundary element method (BEM) calculations for cavity acoustics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20discrete%20vortex%20method%20(DVM)/boundary%20element%20method%20(BEM)%20calculations%20for%20cavity%20acoustics&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Epstein,%20Ronald%20J.&rft.date=1999-02-01&rft.volume=105&rft.issue=2_Supplement&rft.spage=1372&rft.epage=1372&rft.pages=1372-1372&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.426495&rft_dat=%3Ccrossref%3E10_1121_1_426495%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true