Time-average temperature distribution in a thermoacoustic stack

The three-dimensional time-average temperature distribution in a pore of a thermally isolated thermoacoustic stack is calculated. A boundary-value problem is formulated in the acoustic and short-stack approximations from the equation of conservation of energy using literature results for the time-av...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1998-01, Vol.103 (1), p.380-388
1. Verfasser: Mozurkewich, George
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 1
container_start_page 380
container_title The Journal of the Acoustical Society of America
container_volume 103
creator Mozurkewich, George
description The three-dimensional time-average temperature distribution in a pore of a thermally isolated thermoacoustic stack is calculated. A boundary-value problem is formulated in the acoustic and short-stack approximations from the equation of conservation of energy using literature results for the time-average energy flux. In the central region of the pore, the solution for the time-average temperatures of the wall, Tw, and of the gas along its center line, Tg, share a common profile, linear in the axial coordinate, z. Near the pore ends, where the energy flux approaches zero, the axial gradient of Tg approaches the critical temperature gradient over a distance of order the acoustic displacement amplitude. The axial gradient of Tw approaches zero over a much smaller distance, provided the wall has small thermal conductivity. The transverse heat-flux density, q, is nonzero only near pore ends. Under certain conditions, q=h1(Tg−Tw), where h1 is proportional to the thermal conductivity of the gas divided by the thermal penetration depth. The constant of proportionality, of order unity, depends on pore width and Prandtl number. Results agree favorably with recently published numerical calculations.
doi_str_mv 10.1121/1.423109
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_423109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_423109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-25f09bce9431bf4d6db951d1b7adc7f238d3a2b5d9e5ced7bc2e2ae3b5ba3e6c3</originalsourceid><addsrcrecordid>eNotj81KxDAURoMoWEfBR8jSTcbcm6ZtViKDjsKAm3Fd8nOrUTsdklTw7R0ZV-c7mw8OY9cglwAIt7CsUYE0J6wCjVJ0GutTVkkpQdSmac7ZRc4fB9WdMhW728aRhP2mZN-IFxr3h1XmRDzEXFJ0c4nTjscdt7y8Uxon66c5l-h5LtZ_XrKzwX5luvrngr0-PmxXT2Lzsn5e3W-ER9RFoB6kcZ5MrcANdWiCMxoCuNYG3w6ouqAsOh0MaU-hdR4JLSmnnVXUeLVgN8dfn6acEw39PsXRpp8eZP8X3kN_DFe_AEtMWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-average temperature distribution in a thermoacoustic stack</title><source>AIP Acoustical Society of America</source><creator>Mozurkewich, George</creator><creatorcontrib>Mozurkewich, George</creatorcontrib><description>The three-dimensional time-average temperature distribution in a pore of a thermally isolated thermoacoustic stack is calculated. A boundary-value problem is formulated in the acoustic and short-stack approximations from the equation of conservation of energy using literature results for the time-average energy flux. In the central region of the pore, the solution for the time-average temperatures of the wall, Tw, and of the gas along its center line, Tg, share a common profile, linear in the axial coordinate, z. Near the pore ends, where the energy flux approaches zero, the axial gradient of Tg approaches the critical temperature gradient over a distance of order the acoustic displacement amplitude. The axial gradient of Tw approaches zero over a much smaller distance, provided the wall has small thermal conductivity. The transverse heat-flux density, q, is nonzero only near pore ends. Under certain conditions, q=h1(Tg−Tw), where h1 is proportional to the thermal conductivity of the gas divided by the thermal penetration depth. The constant of proportionality, of order unity, depends on pore width and Prandtl number. Results agree favorably with recently published numerical calculations.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.423109</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1998-01, Vol.103 (1), p.380-388</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-25f09bce9431bf4d6db951d1b7adc7f238d3a2b5d9e5ced7bc2e2ae3b5ba3e6c3</citedby><cites>FETCH-LOGICAL-c225t-25f09bce9431bf4d6db951d1b7adc7f238d3a2b5d9e5ced7bc2e2ae3b5ba3e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mozurkewich, George</creatorcontrib><title>Time-average temperature distribution in a thermoacoustic stack</title><title>The Journal of the Acoustical Society of America</title><description>The three-dimensional time-average temperature distribution in a pore of a thermally isolated thermoacoustic stack is calculated. A boundary-value problem is formulated in the acoustic and short-stack approximations from the equation of conservation of energy using literature results for the time-average energy flux. In the central region of the pore, the solution for the time-average temperatures of the wall, Tw, and of the gas along its center line, Tg, share a common profile, linear in the axial coordinate, z. Near the pore ends, where the energy flux approaches zero, the axial gradient of Tg approaches the critical temperature gradient over a distance of order the acoustic displacement amplitude. The axial gradient of Tw approaches zero over a much smaller distance, provided the wall has small thermal conductivity. The transverse heat-flux density, q, is nonzero only near pore ends. Under certain conditions, q=h1(Tg−Tw), where h1 is proportional to the thermal conductivity of the gas divided by the thermal penetration depth. The constant of proportionality, of order unity, depends on pore width and Prandtl number. Results agree favorably with recently published numerical calculations.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNotj81KxDAURoMoWEfBR8jSTcbcm6ZtViKDjsKAm3Fd8nOrUTsdklTw7R0ZV-c7mw8OY9cglwAIt7CsUYE0J6wCjVJ0GutTVkkpQdSmac7ZRc4fB9WdMhW728aRhP2mZN-IFxr3h1XmRDzEXFJ0c4nTjscdt7y8Uxon66c5l-h5LtZ_XrKzwX5luvrngr0-PmxXT2Lzsn5e3W-ER9RFoB6kcZ5MrcANdWiCMxoCuNYG3w6ouqAsOh0MaU-hdR4JLSmnnVXUeLVgN8dfn6acEw39PsXRpp8eZP8X3kN_DFe_AEtMWw</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Mozurkewich, George</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980101</creationdate><title>Time-average temperature distribution in a thermoacoustic stack</title><author>Mozurkewich, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-25f09bce9431bf4d6db951d1b7adc7f238d3a2b5d9e5ced7bc2e2ae3b5ba3e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mozurkewich, George</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mozurkewich, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-average temperature distribution in a thermoacoustic stack</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>103</volume><issue>1</issue><spage>380</spage><epage>388</epage><pages>380-388</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>The three-dimensional time-average temperature distribution in a pore of a thermally isolated thermoacoustic stack is calculated. A boundary-value problem is formulated in the acoustic and short-stack approximations from the equation of conservation of energy using literature results for the time-average energy flux. In the central region of the pore, the solution for the time-average temperatures of the wall, Tw, and of the gas along its center line, Tg, share a common profile, linear in the axial coordinate, z. Near the pore ends, where the energy flux approaches zero, the axial gradient of Tg approaches the critical temperature gradient over a distance of order the acoustic displacement amplitude. The axial gradient of Tw approaches zero over a much smaller distance, provided the wall has small thermal conductivity. The transverse heat-flux density, q, is nonzero only near pore ends. Under certain conditions, q=h1(Tg−Tw), where h1 is proportional to the thermal conductivity of the gas divided by the thermal penetration depth. The constant of proportionality, of order unity, depends on pore width and Prandtl number. Results agree favorably with recently published numerical calculations.</abstract><doi>10.1121/1.423109</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1998-01, Vol.103 (1), p.380-388
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_423109
source AIP Acoustical Society of America
title Time-average temperature distribution in a thermoacoustic stack
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-average%20temperature%20distribution%20in%20a%20thermoacoustic%20stack&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Mozurkewich,%20George&rft.date=1998-01-01&rft.volume=103&rft.issue=1&rft.spage=380&rft.epage=388&rft.pages=380-388&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.423109&rft_dat=%3Ccrossref%3E10_1121_1_423109%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true