Acoustical modeling for use in the engineering design of waveguides

Many situations exist in which sound waves are constrained to propagate in waveguides. If the diameter is small compared to the wavelength of sound to be propagated, it implies that only plane waves propagate in a cylindrical tube or spherical waves in a horn. The input impedance of any axially symm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1994-05, Vol.95 (5_Supplement), p.2932-2932
1. Verfasser: Tsai, Jianming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2932
container_issue 5_Supplement
container_start_page 2932
container_title The Journal of the Acoustical Society of America
container_volume 95
creator Tsai, Jianming
description Many situations exist in which sound waves are constrained to propagate in waveguides. If the diameter is small compared to the wavelength of sound to be propagated, it implies that only plane waves propagate in a cylindrical tube or spherical waves in a horn. The input impedance of any axially symmetric waveguide is of primary importance to simulate fluid resonance behavior before an actual engineering design is made. This acoustical model implements a frequency domain characteristic based on the ABCD transformation matrix [A. H. Benade, J. Acoust. Soc. Am. 83, 1764–1769 (1988)]. The input impedance is expressed in terms of the ABCD matrix, which relates ‘‘input-end’’ (p1, u1) pressure and flow to the ‘‘output-end’’ pressure and flow (p2, u2). Any complicated waveguide system can be treated as a combination of a number of uniformly shaped waveguides, and thus the resultant ABCD matrix can be the product of the individual matrices from the input to the output ends. Experimental results as well as numerical predictions for a nozzle used in an industrial ink jet printer are presented and discussed.
doi_str_mv 10.1121/1.408742
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_408742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_408742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672-877ea596992457cf2d394c6aec2eec4006bf6b050bcdfcef77eb7b441dcdcc663</originalsourceid><addsrcrecordid>eNotj81LwzAYxnNQcE7BPyFHL51JmibNcRQ_BgMvu5f0zZsa6RJJVsX_3o55eng-eOBHyANnG84Ff-IbyVotxRVZMcZ4JY1SN-S2lM_FNm1tVqTbQprLKYCd6DE5nEIcqU-ZzgVpiPT0gRTjGCJiPlcOSxgjTZ7-2G8c57AEd-Ta26ng_b-uyeHl-dC9Vfv311233VegtKhardE2RhkjZKPBC1cbCcoiCESQjKnBq4E1bADnAf0yH_QgJXfgAJSq1-Txcgs5lZLR9185HG3-7Tnrz7w97y-89R-H50qI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acoustical modeling for use in the engineering design of waveguides</title><source>AIP Acoustical Society of America</source><creator>Tsai, Jianming</creator><creatorcontrib>Tsai, Jianming</creatorcontrib><description>Many situations exist in which sound waves are constrained to propagate in waveguides. If the diameter is small compared to the wavelength of sound to be propagated, it implies that only plane waves propagate in a cylindrical tube or spherical waves in a horn. The input impedance of any axially symmetric waveguide is of primary importance to simulate fluid resonance behavior before an actual engineering design is made. This acoustical model implements a frequency domain characteristic based on the ABCD transformation matrix [A. H. Benade, J. Acoust. Soc. Am. 83, 1764–1769 (1988)]. The input impedance is expressed in terms of the ABCD matrix, which relates ‘‘input-end’’ (p1, u1) pressure and flow to the ‘‘output-end’’ pressure and flow (p2, u2). Any complicated waveguide system can be treated as a combination of a number of uniformly shaped waveguides, and thus the resultant ABCD matrix can be the product of the individual matrices from the input to the output ends. Experimental results as well as numerical predictions for a nozzle used in an industrial ink jet printer are presented and discussed.</description><identifier>ISSN: 0001-4966</identifier><identifier>DOI: 10.1121/1.408742</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1994-05, Vol.95 (5_Supplement), p.2932-2932</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tsai, Jianming</creatorcontrib><title>Acoustical modeling for use in the engineering design of waveguides</title><title>The Journal of the Acoustical Society of America</title><description>Many situations exist in which sound waves are constrained to propagate in waveguides. If the diameter is small compared to the wavelength of sound to be propagated, it implies that only plane waves propagate in a cylindrical tube or spherical waves in a horn. The input impedance of any axially symmetric waveguide is of primary importance to simulate fluid resonance behavior before an actual engineering design is made. This acoustical model implements a frequency domain characteristic based on the ABCD transformation matrix [A. H. Benade, J. Acoust. Soc. Am. 83, 1764–1769 (1988)]. The input impedance is expressed in terms of the ABCD matrix, which relates ‘‘input-end’’ (p1, u1) pressure and flow to the ‘‘output-end’’ pressure and flow (p2, u2). Any complicated waveguide system can be treated as a combination of a number of uniformly shaped waveguides, and thus the resultant ABCD matrix can be the product of the individual matrices from the input to the output ends. Experimental results as well as numerical predictions for a nozzle used in an industrial ink jet printer are presented and discussed.</description><issn>0001-4966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNotj81LwzAYxnNQcE7BPyFHL51JmibNcRQ_BgMvu5f0zZsa6RJJVsX_3o55eng-eOBHyANnG84Ff-IbyVotxRVZMcZ4JY1SN-S2lM_FNm1tVqTbQprLKYCd6DE5nEIcqU-ZzgVpiPT0gRTjGCJiPlcOSxgjTZ7-2G8c57AEd-Ta26ng_b-uyeHl-dC9Vfv311233VegtKhardE2RhkjZKPBC1cbCcoiCESQjKnBq4E1bADnAf0yH_QgJXfgAJSq1-Txcgs5lZLR9185HG3-7Tnrz7w97y-89R-H50qI</recordid><startdate>19940501</startdate><enddate>19940501</enddate><creator>Tsai, Jianming</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940501</creationdate><title>Acoustical modeling for use in the engineering design of waveguides</title><author>Tsai, Jianming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672-877ea596992457cf2d394c6aec2eec4006bf6b050bcdfcef77eb7b441dcdcc663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Jianming</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Jianming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustical modeling for use in the engineering design of waveguides</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1994-05-01</date><risdate>1994</risdate><volume>95</volume><issue>5_Supplement</issue><spage>2932</spage><epage>2932</epage><pages>2932-2932</pages><issn>0001-4966</issn><abstract>Many situations exist in which sound waves are constrained to propagate in waveguides. If the diameter is small compared to the wavelength of sound to be propagated, it implies that only plane waves propagate in a cylindrical tube or spherical waves in a horn. The input impedance of any axially symmetric waveguide is of primary importance to simulate fluid resonance behavior before an actual engineering design is made. This acoustical model implements a frequency domain characteristic based on the ABCD transformation matrix [A. H. Benade, J. Acoust. Soc. Am. 83, 1764–1769 (1988)]. The input impedance is expressed in terms of the ABCD matrix, which relates ‘‘input-end’’ (p1, u1) pressure and flow to the ‘‘output-end’’ pressure and flow (p2, u2). Any complicated waveguide system can be treated as a combination of a number of uniformly shaped waveguides, and thus the resultant ABCD matrix can be the product of the individual matrices from the input to the output ends. Experimental results as well as numerical predictions for a nozzle used in an industrial ink jet printer are presented and discussed.</abstract><doi>10.1121/1.408742</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1994-05, Vol.95 (5_Supplement), p.2932-2932
issn 0001-4966
language eng
recordid cdi_crossref_primary_10_1121_1_408742
source AIP Acoustical Society of America
title Acoustical modeling for use in the engineering design of waveguides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustical%20modeling%20for%20use%20in%20the%20engineering%20design%20of%20waveguides&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Tsai,%20Jianming&rft.date=1994-05-01&rft.volume=95&rft.issue=5_Supplement&rft.spage=2932&rft.epage=2932&rft.pages=2932-2932&rft.issn=0001-4966&rft_id=info:doi/10.1121/1.408742&rft_dat=%3Ccrossref%3E10_1121_1_408742%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true