An analytic model for the vibrations of rectangular shells of variable curvature and thickness

A flexible and powerful model is developed for analyzing the vibration of a rectangular platform shell whose curvature and thickness are arbitrary. The shape of the shell can have almost any conceivable representation, since the curvature and thickness are represented by bicubic polynomials of the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1993-04, Vol.93 (4_Supplement), p.2335-2335
Hauptverfasser: Okajima, Masahiko, Burroughs, Courtney B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2335
container_issue 4_Supplement
container_start_page 2335
container_title The Journal of the Acoustical Society of America
container_volume 93
creator Okajima, Masahiko
Burroughs, Courtney B.
description A flexible and powerful model is developed for analyzing the vibration of a rectangular platform shell whose curvature and thickness are arbitrary. The shape of the shell can have almost any conceivable representation, since the curvature and thickness are represented by bicubic polynomials of the centerline arc length. The vibration model includes the effects of shear deformation, rotary inertia, and centerline extension. The equations of motion are solved by an alternative form of the Rayleigh–Ritz method. The resulting integral formulas for the stiffness and mass matrix elements are evaluated by a set of simple computer routines that do symbolic manipulations of algebra and calculus. Predictions of the natural frequency for the several shell geometries are compared to published data, with good agreement. A parameter study shows the dependence of the resonance frequencies and mode shapes on the curvature and the thickness of the shell.
doi_str_mv 10.1121/1.406318
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_406318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_406318</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1121_1_4063183</originalsourceid><addsrcrecordid>eNqVjsFOAkEQROeAiSgmfEIfvYDTLGzgaIiGD-DMpBl6YXSYId2zm_D3rMoPeKpUparyjBmjnSLO8A2nc1tXuByYobUWJ_NVXT-aJ9Wv3i6W1Wpodu8JKFG8luDhnA8cockC5cTQhb1QCTkp5AaEfaF0bCMJ6Ilj_E07kkD7yOBb6ai0wv3boZ8H_51YdWQeGorKL3d9Nq-fH9v1ZuIlqwo37iLhTHJ1aN0Ps0P3x1z9o3oDioFJeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An analytic model for the vibrations of rectangular shells of variable curvature and thickness</title><source>AIP Acoustical Society of America</source><creator>Okajima, Masahiko ; Burroughs, Courtney B.</creator><creatorcontrib>Okajima, Masahiko ; Burroughs, Courtney B.</creatorcontrib><description>A flexible and powerful model is developed for analyzing the vibration of a rectangular platform shell whose curvature and thickness are arbitrary. The shape of the shell can have almost any conceivable representation, since the curvature and thickness are represented by bicubic polynomials of the centerline arc length. The vibration model includes the effects of shear deformation, rotary inertia, and centerline extension. The equations of motion are solved by an alternative form of the Rayleigh–Ritz method. The resulting integral formulas for the stiffness and mass matrix elements are evaluated by a set of simple computer routines that do symbolic manipulations of algebra and calculus. Predictions of the natural frequency for the several shell geometries are compared to published data, with good agreement. A parameter study shows the dependence of the resonance frequencies and mode shapes on the curvature and the thickness of the shell.</description><identifier>ISSN: 0001-4966</identifier><identifier>DOI: 10.1121/1.406318</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1993-04, Vol.93 (4_Supplement), p.2335-2335</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Okajima, Masahiko</creatorcontrib><creatorcontrib>Burroughs, Courtney B.</creatorcontrib><title>An analytic model for the vibrations of rectangular shells of variable curvature and thickness</title><title>The Journal of the Acoustical Society of America</title><description>A flexible and powerful model is developed for analyzing the vibration of a rectangular platform shell whose curvature and thickness are arbitrary. The shape of the shell can have almost any conceivable representation, since the curvature and thickness are represented by bicubic polynomials of the centerline arc length. The vibration model includes the effects of shear deformation, rotary inertia, and centerline extension. The equations of motion are solved by an alternative form of the Rayleigh–Ritz method. The resulting integral formulas for the stiffness and mass matrix elements are evaluated by a set of simple computer routines that do symbolic manipulations of algebra and calculus. Predictions of the natural frequency for the several shell geometries are compared to published data, with good agreement. A parameter study shows the dependence of the resonance frequencies and mode shapes on the curvature and the thickness of the shell.</description><issn>0001-4966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqVjsFOAkEQROeAiSgmfEIfvYDTLGzgaIiGD-DMpBl6YXSYId2zm_D3rMoPeKpUparyjBmjnSLO8A2nc1tXuByYobUWJ_NVXT-aJ9Wv3i6W1Wpodu8JKFG8luDhnA8cockC5cTQhb1QCTkp5AaEfaF0bCMJ6Ilj_E07kkD7yOBb6ai0wv3boZ8H_51YdWQeGorKL3d9Nq-fH9v1ZuIlqwo37iLhTHJ1aN0Ps0P3x1z9o3oDioFJeQ</recordid><startdate>19930401</startdate><enddate>19930401</enddate><creator>Okajima, Masahiko</creator><creator>Burroughs, Courtney B.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930401</creationdate><title>An analytic model for the vibrations of rectangular shells of variable curvature and thickness</title><author>Okajima, Masahiko ; Burroughs, Courtney B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1121_1_4063183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okajima, Masahiko</creatorcontrib><creatorcontrib>Burroughs, Courtney B.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okajima, Masahiko</au><au>Burroughs, Courtney B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytic model for the vibrations of rectangular shells of variable curvature and thickness</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1993-04-01</date><risdate>1993</risdate><volume>93</volume><issue>4_Supplement</issue><spage>2335</spage><epage>2335</epage><pages>2335-2335</pages><issn>0001-4966</issn><abstract>A flexible and powerful model is developed for analyzing the vibration of a rectangular platform shell whose curvature and thickness are arbitrary. The shape of the shell can have almost any conceivable representation, since the curvature and thickness are represented by bicubic polynomials of the centerline arc length. The vibration model includes the effects of shear deformation, rotary inertia, and centerline extension. The equations of motion are solved by an alternative form of the Rayleigh–Ritz method. The resulting integral formulas for the stiffness and mass matrix elements are evaluated by a set of simple computer routines that do symbolic manipulations of algebra and calculus. Predictions of the natural frequency for the several shell geometries are compared to published data, with good agreement. A parameter study shows the dependence of the resonance frequencies and mode shapes on the curvature and the thickness of the shell.</abstract><doi>10.1121/1.406318</doi></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1993-04, Vol.93 (4_Supplement), p.2335-2335
issn 0001-4966
language eng
recordid cdi_crossref_primary_10_1121_1_406318
source AIP Acoustical Society of America
title An analytic model for the vibrations of rectangular shells of variable curvature and thickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytic%20model%20for%20the%20vibrations%20of%20rectangular%20shells%20of%20variable%20curvature%20and%20thickness&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Okajima,%20Masahiko&rft.date=1993-04-01&rft.volume=93&rft.issue=4_Supplement&rft.spage=2335&rft.epage=2335&rft.pages=2335-2335&rft.issn=0001-4966&rft_id=info:doi/10.1121/1.406318&rft_dat=%3Ccrossref%3E10_1121_1_406318%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true