Axisymmetric wave propagation in fluid-loaded cylindrical shells: Theory versus experiment

This paper discusses both theoretical and experimental aspects of axisymmetric wave propagation along fluid-loaded cylindrical shells (excluding torsional modes). For a steel cylindrical shell with a fixed ratio of inner to outer radius, four different fluid configurations are considered: water insi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1992-04, Vol.91 (4_Supplement), p.2470-2470
Hauptverfasser: Plona, Thomas J., Sinha, Bikash K., Kostek, Sergio, Chang, Shu-Kong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2470
container_issue 4_Supplement
container_start_page 2470
container_title The Journal of the Acoustical Society of America
container_volume 91
creator Plona, Thomas J.
Sinha, Bikash K.
Kostek, Sergio
Chang, Shu-Kong
description This paper discusses both theoretical and experimental aspects of axisymmetric wave propagation along fluid-loaded cylindrical shells (excluding torsional modes). For a steel cylindrical shell with a fixed ratio of inner to outer radius, four different fluid configurations are considered: water inside and outside the steel shell; air inside and outside; water inside and air outside; and air inside and water outside. Calculations of the transient pressure response for the case of an axisymmetric ring source and a point receiver are made as a function of source–receiver separation. Experimentally, a PZT ring source and ring receiver are placed around a steel cylindrical shell with an outer radius of 9.53 mm and an inner radius of 7.94 mm. Waveforms are recorded for multiple source–receiver hydrophone spacings in the frequency band 50–240 kHz. Using a Prony’s method, the complex wave number as a function of frequency for each of the modes in the system is derived from both the theoretical and experimental waveforms. These axisymmetric modes are grouped into three categories: steel modes, non-cutoff fluid modes, and cutoff fluid modes. Excellent agreement is obtained between theory and experiment.
doi_str_mv 10.1121/1.403012
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_403012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_403012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672-aed48cdb662ba429ecf1c9b150602ec4776a89507d4cf9410eb46d2755593a693</originalsourceid><addsrcrecordid>eNotkE1LAzEURbNQsFbBn5Clm6l5mSQzcVeKWqHgZlZuhkzyxkYyHyTT2vn3VurqcuFyLhxCHoCtADg8wUqwnAG_IgvGGGRCK3VDblP6PldZ5npBPtcnn-auwyl6S3_MEekYh9F8mckPPfU9bcPBuywMxqGjdg6-d-epCTTtMYT0TKs9DnGmR4zpkCieRoy-w366I9etCQnv_3NJqteXarPNdh9v75v1LrOq4JlBJ0rrGqV4YwTXaFuwugHJFONoRVEoU2rJCidsqwUwbIRyvJBS6twonS_J4wVr45BSxLYez_8mzjWw-k9DDfVFQ_4LUkpSqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Axisymmetric wave propagation in fluid-loaded cylindrical shells: Theory versus experiment</title><source>Acoustical Society of America (AIP)</source><creator>Plona, Thomas J. ; Sinha, Bikash K. ; Kostek, Sergio ; Chang, Shu-Kong</creator><creatorcontrib>Plona, Thomas J. ; Sinha, Bikash K. ; Kostek, Sergio ; Chang, Shu-Kong</creatorcontrib><description>This paper discusses both theoretical and experimental aspects of axisymmetric wave propagation along fluid-loaded cylindrical shells (excluding torsional modes). For a steel cylindrical shell with a fixed ratio of inner to outer radius, four different fluid configurations are considered: water inside and outside the steel shell; air inside and outside; water inside and air outside; and air inside and water outside. Calculations of the transient pressure response for the case of an axisymmetric ring source and a point receiver are made as a function of source–receiver separation. Experimentally, a PZT ring source and ring receiver are placed around a steel cylindrical shell with an outer radius of 9.53 mm and an inner radius of 7.94 mm. Waveforms are recorded for multiple source–receiver hydrophone spacings in the frequency band 50–240 kHz. Using a Prony’s method, the complex wave number as a function of frequency for each of the modes in the system is derived from both the theoretical and experimental waveforms. These axisymmetric modes are grouped into three categories: steel modes, non-cutoff fluid modes, and cutoff fluid modes. Excellent agreement is obtained between theory and experiment.</description><identifier>ISSN: 0001-4966</identifier><identifier>DOI: 10.1121/1.403012</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1992-04, Vol.91 (4_Supplement), p.2470-2470</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Plona, Thomas J.</creatorcontrib><creatorcontrib>Sinha, Bikash K.</creatorcontrib><creatorcontrib>Kostek, Sergio</creatorcontrib><creatorcontrib>Chang, Shu-Kong</creatorcontrib><title>Axisymmetric wave propagation in fluid-loaded cylindrical shells: Theory versus experiment</title><title>The Journal of the Acoustical Society of America</title><description>This paper discusses both theoretical and experimental aspects of axisymmetric wave propagation along fluid-loaded cylindrical shells (excluding torsional modes). For a steel cylindrical shell with a fixed ratio of inner to outer radius, four different fluid configurations are considered: water inside and outside the steel shell; air inside and outside; water inside and air outside; and air inside and water outside. Calculations of the transient pressure response for the case of an axisymmetric ring source and a point receiver are made as a function of source–receiver separation. Experimentally, a PZT ring source and ring receiver are placed around a steel cylindrical shell with an outer radius of 9.53 mm and an inner radius of 7.94 mm. Waveforms are recorded for multiple source–receiver hydrophone spacings in the frequency band 50–240 kHz. Using a Prony’s method, the complex wave number as a function of frequency for each of the modes in the system is derived from both the theoretical and experimental waveforms. These axisymmetric modes are grouped into three categories: steel modes, non-cutoff fluid modes, and cutoff fluid modes. Excellent agreement is obtained between theory and experiment.</description><issn>0001-4966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURbNQsFbBn5Clm6l5mSQzcVeKWqHgZlZuhkzyxkYyHyTT2vn3VurqcuFyLhxCHoCtADg8wUqwnAG_IgvGGGRCK3VDblP6PldZ5npBPtcnn-auwyl6S3_MEekYh9F8mckPPfU9bcPBuywMxqGjdg6-d-epCTTtMYT0TKs9DnGmR4zpkCieRoy-w366I9etCQnv_3NJqteXarPNdh9v75v1LrOq4JlBJ0rrGqV4YwTXaFuwugHJFONoRVEoU2rJCidsqwUwbIRyvJBS6twonS_J4wVr45BSxLYez_8mzjWw-k9DDfVFQ_4LUkpSqg</recordid><startdate>19920401</startdate><enddate>19920401</enddate><creator>Plona, Thomas J.</creator><creator>Sinha, Bikash K.</creator><creator>Kostek, Sergio</creator><creator>Chang, Shu-Kong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920401</creationdate><title>Axisymmetric wave propagation in fluid-loaded cylindrical shells: Theory versus experiment</title><author>Plona, Thomas J. ; Sinha, Bikash K. ; Kostek, Sergio ; Chang, Shu-Kong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672-aed48cdb662ba429ecf1c9b150602ec4776a89507d4cf9410eb46d2755593a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plona, Thomas J.</creatorcontrib><creatorcontrib>Sinha, Bikash K.</creatorcontrib><creatorcontrib>Kostek, Sergio</creatorcontrib><creatorcontrib>Chang, Shu-Kong</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plona, Thomas J.</au><au>Sinha, Bikash K.</au><au>Kostek, Sergio</au><au>Chang, Shu-Kong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axisymmetric wave propagation in fluid-loaded cylindrical shells: Theory versus experiment</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1992-04-01</date><risdate>1992</risdate><volume>91</volume><issue>4_Supplement</issue><spage>2470</spage><epage>2470</epage><pages>2470-2470</pages><issn>0001-4966</issn><abstract>This paper discusses both theoretical and experimental aspects of axisymmetric wave propagation along fluid-loaded cylindrical shells (excluding torsional modes). For a steel cylindrical shell with a fixed ratio of inner to outer radius, four different fluid configurations are considered: water inside and outside the steel shell; air inside and outside; water inside and air outside; and air inside and water outside. Calculations of the transient pressure response for the case of an axisymmetric ring source and a point receiver are made as a function of source–receiver separation. Experimentally, a PZT ring source and ring receiver are placed around a steel cylindrical shell with an outer radius of 9.53 mm and an inner radius of 7.94 mm. Waveforms are recorded for multiple source–receiver hydrophone spacings in the frequency band 50–240 kHz. Using a Prony’s method, the complex wave number as a function of frequency for each of the modes in the system is derived from both the theoretical and experimental waveforms. These axisymmetric modes are grouped into three categories: steel modes, non-cutoff fluid modes, and cutoff fluid modes. Excellent agreement is obtained between theory and experiment.</abstract><doi>10.1121/1.403012</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1992-04, Vol.91 (4_Supplement), p.2470-2470
issn 0001-4966
language eng
recordid cdi_crossref_primary_10_1121_1_403012
source Acoustical Society of America (AIP)
title Axisymmetric wave propagation in fluid-loaded cylindrical shells: Theory versus experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axisymmetric%20wave%20propagation%20in%20fluid-loaded%20cylindrical%20shells:%20Theory%20versus%20experiment&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Plona,%20Thomas%20J.&rft.date=1992-04-01&rft.volume=91&rft.issue=4_Supplement&rft.spage=2470&rft.epage=2470&rft.pages=2470-2470&rft.issn=0001-4966&rft_id=info:doi/10.1121/1.403012&rft_dat=%3Ccrossref%3E10_1121_1_403012%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true