Floquet waves in anisotropic periodically layered composites

The field equations governing the plane harmonic elastic motions of anisotropic stratified media are written in the form of a matrix system of differential equations, where the dependent variables are the displacements and tractions acting across planes normal to the direction of stratification. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1992-03, Vol.91 (3), p.1211-1227
Hauptverfasser: Braga, Arthur M. B., Herrmann, George
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1227
container_issue 3
container_start_page 1211
container_title The Journal of the Acoustical Society of America
container_volume 91
creator Braga, Arthur M. B.
Herrmann, George
description The field equations governing the plane harmonic elastic motions of anisotropic stratified media are written in the form of a matrix system of differential equations, where the dependent variables are the displacements and tractions acting across planes normal to the direction of stratification. In the case of periodically layered media, Floquet’s theorem and the propagator matrix method can be applied to solve the governing sextic matrix equation. In the absence of sources or body forces, the general motion of the layered medium is described by a combination of six partial waves (Floquet waves). A closed-form algebraic solution for the dispersion equation of such waves is derived. Numerical results describing the dispersion spectrum of a cross-ply periodic laminated are discussed in detail.
doi_str_mv 10.1121/1.402505
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_402505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_402505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3c119260d782080b657b22d3dff3e3c8b0bd2a45d5e07dd5a95851837aa3f8973</originalsourceid><addsrcrecordid>eNotj8FKxDAUAIMoWFfBT8jRS9f3kr42AS-yuCoseNFzSJMUIt1NTarSv1dZT8NcBoaxa4Q1osBbXDcgCOiEVUgCakWiOWUVAGDd6LY9ZxelvP8qKakrdrcd08dnmPm3_QqFxwO3h1jSnNMUHZ9CjslHZ8dx4aNdQg6eu7SfUolzKJfsbLBjCVf_XLG37cPr5qnevTw-b-53tRMa51o6RC1a8J0SoKBvqeuF8NIPgwzSqR56L2xDngJ03pPVpAiV7KyVg9KdXLGbY9flVEoOg5ly3Nu8GATzd23QHK_lD393SWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Floquet waves in anisotropic periodically layered composites</title><source>AIP Acoustical Society of America</source><creator>Braga, Arthur M. B. ; Herrmann, George</creator><creatorcontrib>Braga, Arthur M. B. ; Herrmann, George</creatorcontrib><description>The field equations governing the plane harmonic elastic motions of anisotropic stratified media are written in the form of a matrix system of differential equations, where the dependent variables are the displacements and tractions acting across planes normal to the direction of stratification. In the case of periodically layered media, Floquet’s theorem and the propagator matrix method can be applied to solve the governing sextic matrix equation. In the absence of sources or body forces, the general motion of the layered medium is described by a combination of six partial waves (Floquet waves). A closed-form algebraic solution for the dispersion equation of such waves is derived. Numerical results describing the dispersion spectrum of a cross-ply periodic laminated are discussed in detail.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.402505</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1992-03, Vol.91 (3), p.1211-1227</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3c119260d782080b657b22d3dff3e3c8b0bd2a45d5e07dd5a95851837aa3f8973</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Braga, Arthur M. B.</creatorcontrib><creatorcontrib>Herrmann, George</creatorcontrib><title>Floquet waves in anisotropic periodically layered composites</title><title>The Journal of the Acoustical Society of America</title><description>The field equations governing the plane harmonic elastic motions of anisotropic stratified media are written in the form of a matrix system of differential equations, where the dependent variables are the displacements and tractions acting across planes normal to the direction of stratification. In the case of periodically layered media, Floquet’s theorem and the propagator matrix method can be applied to solve the governing sextic matrix equation. In the absence of sources or body forces, the general motion of the layered medium is described by a combination of six partial waves (Floquet waves). A closed-form algebraic solution for the dispersion equation of such waves is derived. Numerical results describing the dispersion spectrum of a cross-ply periodic laminated are discussed in detail.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNotj8FKxDAUAIMoWFfBT8jRS9f3kr42AS-yuCoseNFzSJMUIt1NTarSv1dZT8NcBoaxa4Q1osBbXDcgCOiEVUgCakWiOWUVAGDd6LY9ZxelvP8qKakrdrcd08dnmPm3_QqFxwO3h1jSnNMUHZ9CjslHZ8dx4aNdQg6eu7SfUolzKJfsbLBjCVf_XLG37cPr5qnevTw-b-53tRMa51o6RC1a8J0SoKBvqeuF8NIPgwzSqR56L2xDngJ03pPVpAiV7KyVg9KdXLGbY9flVEoOg5ly3Nu8GATzd23QHK_lD393SWk</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Braga, Arthur M. B.</creator><creator>Herrmann, George</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920301</creationdate><title>Floquet waves in anisotropic periodically layered composites</title><author>Braga, Arthur M. B. ; Herrmann, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3c119260d782080b657b22d3dff3e3c8b0bd2a45d5e07dd5a95851837aa3f8973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braga, Arthur M. B.</creatorcontrib><creatorcontrib>Herrmann, George</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braga, Arthur M. B.</au><au>Herrmann, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floquet waves in anisotropic periodically layered composites</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1992-03-01</date><risdate>1992</risdate><volume>91</volume><issue>3</issue><spage>1211</spage><epage>1227</epage><pages>1211-1227</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>The field equations governing the plane harmonic elastic motions of anisotropic stratified media are written in the form of a matrix system of differential equations, where the dependent variables are the displacements and tractions acting across planes normal to the direction of stratification. In the case of periodically layered media, Floquet’s theorem and the propagator matrix method can be applied to solve the governing sextic matrix equation. In the absence of sources or body forces, the general motion of the layered medium is described by a combination of six partial waves (Floquet waves). A closed-form algebraic solution for the dispersion equation of such waves is derived. Numerical results describing the dispersion spectrum of a cross-ply periodic laminated are discussed in detail.</abstract><doi>10.1121/1.402505</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1992-03, Vol.91 (3), p.1211-1227
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_402505
source AIP Acoustical Society of America
title Floquet waves in anisotropic periodically layered composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floquet%20waves%20in%20anisotropic%20periodically%20layered%20composites&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Braga,%20Arthur%20M.%20B.&rft.date=1992-03-01&rft.volume=91&rft.issue=3&rft.spage=1211&rft.epage=1227&rft.pages=1211-1227&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.402505&rft_dat=%3Ccrossref%3E10_1121_1_402505%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true