The thermorheologically complex material

The material dispersion and attenuation of acoustic waves in a linear viscoelastic medium are uniquely described by its frequency-dependent complex moduli. Traditionally, the moduli master curves are constructed using the time-temperature superposition hypothesis that leads to the thermorheologicall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1991-10, Vol.90 (4_Supplement), p.2292-2293
1. Verfasser: Bagley, Ronald L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2293
container_issue 4_Supplement
container_start_page 2292
container_title The Journal of the Acoustical Society of America
container_volume 90
creator Bagley, Ronald L.
description The material dispersion and attenuation of acoustic waves in a linear viscoelastic medium are uniquely described by its frequency-dependent complex moduli. Traditionally, the moduli master curves are constructed using the time-temperature superposition hypothesis that leads to the thermorheologically ‘‘simple’’ material model. Recent research indicates that the time-superposition hypothesis should be modified to account for temperature-dependent shape changes observed in some moduli curves. This modified hypothesis leads to the thermorheologically ‘‘complex’’ material model. The complex model is based on an approximation of quantum mechanical energy transitions in intramolecular bonds and a simple notion of viscoelastic relaxation. The complex model is shown to be related to a fractal time process describing stress relaxation, also to use fractional order time derivations to relate stress fields to strain fields, and to be practical for rheological and engineering analyses.
doi_str_mv 10.1121/1.401100
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_401100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_401100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c720-2cf3aa0dc695f31b54a4e51c50a29399bdbde7c9a605681675d3f5d17c0ddaab3</originalsourceid><addsrcrecordid>eNotj7FqwzAUADW00DQt9BM8ZnH6nmXJ0VhC0xYCXbyLZ-mpdpFRkDI0f5-UZDpuOTghXhDWiA2-4roFRIA7sQAArFuj9YN4LOX3omojzUKs-pGr48h5TnnkFNPP5CjGU-XSfIj8V8105DxRfBL3gWLh5xuXot-999vPev_98bV929eua6BuXJBE4J02KkgcVEstK3QKqDHSmMEPnjtnSIPSG9Sd8jIoj50D74kGuRSra9blVErmYA95mimfLIL9n7Jor1PyDAH5QFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The thermorheologically complex material</title><source>AIP Acoustical Society of America</source><creator>Bagley, Ronald L.</creator><creatorcontrib>Bagley, Ronald L.</creatorcontrib><description>The material dispersion and attenuation of acoustic waves in a linear viscoelastic medium are uniquely described by its frequency-dependent complex moduli. Traditionally, the moduli master curves are constructed using the time-temperature superposition hypothesis that leads to the thermorheologically ‘‘simple’’ material model. Recent research indicates that the time-superposition hypothesis should be modified to account for temperature-dependent shape changes observed in some moduli curves. This modified hypothesis leads to the thermorheologically ‘‘complex’’ material model. The complex model is based on an approximation of quantum mechanical energy transitions in intramolecular bonds and a simple notion of viscoelastic relaxation. The complex model is shown to be related to a fractal time process describing stress relaxation, also to use fractional order time derivations to relate stress fields to strain fields, and to be practical for rheological and engineering analyses.</description><identifier>ISSN: 0001-4966</identifier><identifier>DOI: 10.1121/1.401100</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1991-10, Vol.90 (4_Supplement), p.2292-2293</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c720-2cf3aa0dc695f31b54a4e51c50a29399bdbde7c9a605681675d3f5d17c0ddaab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bagley, Ronald L.</creatorcontrib><title>The thermorheologically complex material</title><title>The Journal of the Acoustical Society of America</title><description>The material dispersion and attenuation of acoustic waves in a linear viscoelastic medium are uniquely described by its frequency-dependent complex moduli. Traditionally, the moduli master curves are constructed using the time-temperature superposition hypothesis that leads to the thermorheologically ‘‘simple’’ material model. Recent research indicates that the time-superposition hypothesis should be modified to account for temperature-dependent shape changes observed in some moduli curves. This modified hypothesis leads to the thermorheologically ‘‘complex’’ material model. The complex model is based on an approximation of quantum mechanical energy transitions in intramolecular bonds and a simple notion of viscoelastic relaxation. The complex model is shown to be related to a fractal time process describing stress relaxation, also to use fractional order time derivations to relate stress fields to strain fields, and to be practical for rheological and engineering analyses.</description><issn>0001-4966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNotj7FqwzAUADW00DQt9BM8ZnH6nmXJ0VhC0xYCXbyLZ-mpdpFRkDI0f5-UZDpuOTghXhDWiA2-4roFRIA7sQAArFuj9YN4LOX3omojzUKs-pGr48h5TnnkFNPP5CjGU-XSfIj8V8105DxRfBL3gWLh5xuXot-999vPev_98bV929eua6BuXJBE4J02KkgcVEstK3QKqDHSmMEPnjtnSIPSG9Sd8jIoj50D74kGuRSra9blVErmYA95mimfLIL9n7Jor1PyDAH5QFg</recordid><startdate>19911001</startdate><enddate>19911001</enddate><creator>Bagley, Ronald L.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19911001</creationdate><title>The thermorheologically complex material</title><author>Bagley, Ronald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c720-2cf3aa0dc695f31b54a4e51c50a29399bdbde7c9a605681675d3f5d17c0ddaab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagley, Ronald L.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagley, Ronald L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The thermorheologically complex material</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1991-10-01</date><risdate>1991</risdate><volume>90</volume><issue>4_Supplement</issue><spage>2292</spage><epage>2293</epage><pages>2292-2293</pages><issn>0001-4966</issn><abstract>The material dispersion and attenuation of acoustic waves in a linear viscoelastic medium are uniquely described by its frequency-dependent complex moduli. Traditionally, the moduli master curves are constructed using the time-temperature superposition hypothesis that leads to the thermorheologically ‘‘simple’’ material model. Recent research indicates that the time-superposition hypothesis should be modified to account for temperature-dependent shape changes observed in some moduli curves. This modified hypothesis leads to the thermorheologically ‘‘complex’’ material model. The complex model is based on an approximation of quantum mechanical energy transitions in intramolecular bonds and a simple notion of viscoelastic relaxation. The complex model is shown to be related to a fractal time process describing stress relaxation, also to use fractional order time derivations to relate stress fields to strain fields, and to be practical for rheological and engineering analyses.</abstract><doi>10.1121/1.401100</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1991-10, Vol.90 (4_Supplement), p.2292-2293
issn 0001-4966
language eng
recordid cdi_crossref_primary_10_1121_1_401100
source AIP Acoustical Society of America
title The thermorheologically complex material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20thermorheologically%20complex%20material&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Bagley,%20Ronald%20L.&rft.date=1991-10-01&rft.volume=90&rft.issue=4_Supplement&rft.spage=2292&rft.epage=2293&rft.pages=2292-2293&rft.issn=0001-4966&rft_id=info:doi/10.1121/1.401100&rft_dat=%3Ccrossref%3E10_1121_1_401100%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true