Determination of the wave velocity in an inhomogeneous medium from the reflection coefficient

In this paper, we study the problem of obtaining the velocity of the wave propagation in an inhomogeneous medium from the reflection coefficient (given for all frequencies) for a one-dimensional wave equation. Following the work of Kay and Moses, we reduce the problem to that of determining a ’’pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1975-01, Vol.58 (5), p.956-963
1. Verfasser: Razavy, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 963
container_issue 5
container_start_page 956
container_title The Journal of the Acoustical Society of America
container_volume 58
creator Razavy, M.
description In this paper, we study the problem of obtaining the velocity of the wave propagation in an inhomogeneous medium from the reflection coefficient (given for all frequencies) for a one-dimensional wave equation. Following the work of Kay and Moses, we reduce the problem to that of determining a ’’potential’’ for a Schrödinger-type equation. However, in our work this ’’potential’’ depends quadratically on the wavenumber, and this dependence changes the structure of the spectral function and integral equations of the inverse problem. In the first part of the paper, we assume that the wave velocity c (x) has the same value at x=+∞ and at x=−∞. Then we relax this condition on c (x) and consider the cases where c (+∞) is different from c (−∞), but both quantities have well-defined values. For certain types of velocities, we obtain the reflection coefficient analytically. We then use these reflection coefficients to get approximate solutions to the inverse problem. Finally, we present an example of a heterogeneous medium which is transparent for all frequencies of the incident wave. Subject Classification: 20.30, 20.35, 20.15.
doi_str_mv 10.1121/1.380756
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_380756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_380756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-806f8e506b1ff5449dcaf06b5eb3c10e0d47f913ee293e042fb79738d07e2bd43</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRMFbBn7BHL6nvfiXZo9RPKHjRo4Rk8752JdmVbFrpvze2XmZ4DjMMw9i1gKUQUtyKpaqgNMUJy4SRkFdG6lOWAYDItS2Kc3aR0teMplI2Yx_3OOE4-NBMPgYeiU8b5D_NDvkO--j8tOc-8CbMuolD_MSAcZv4gJ3fDpzGOBwSI1KP7tDhIhJ55zFMl-yMmj7h1b8v2Pvjw9vqOV-_Pr2s7ta5k9JMeQUFVWigaAWR0dp2rqGZDLbKCUDodElWKERpFYKW1Ja2VFUHJcq202rBbo69bowpzVvq79EPzbivBdR_t9SiPt6ifgGni1YS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of the wave velocity in an inhomogeneous medium from the reflection coefficient</title><source>AIP Acoustical Society of America</source><creator>Razavy, M.</creator><creatorcontrib>Razavy, M.</creatorcontrib><description>In this paper, we study the problem of obtaining the velocity of the wave propagation in an inhomogeneous medium from the reflection coefficient (given for all frequencies) for a one-dimensional wave equation. Following the work of Kay and Moses, we reduce the problem to that of determining a ’’potential’’ for a Schrödinger-type equation. However, in our work this ’’potential’’ depends quadratically on the wavenumber, and this dependence changes the structure of the spectral function and integral equations of the inverse problem. In the first part of the paper, we assume that the wave velocity c (x) has the same value at x=+∞ and at x=−∞. Then we relax this condition on c (x) and consider the cases where c (+∞) is different from c (−∞), but both quantities have well-defined values. For certain types of velocities, we obtain the reflection coefficient analytically. We then use these reflection coefficients to get approximate solutions to the inverse problem. Finally, we present an example of a heterogeneous medium which is transparent for all frequencies of the incident wave. Subject Classification: 20.30, 20.35, 20.15.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.380756</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1975-01, Vol.58 (5), p.956-963</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-806f8e506b1ff5449dcaf06b5eb3c10e0d47f913ee293e042fb79738d07e2bd43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Razavy, M.</creatorcontrib><title>Determination of the wave velocity in an inhomogeneous medium from the reflection coefficient</title><title>The Journal of the Acoustical Society of America</title><description>In this paper, we study the problem of obtaining the velocity of the wave propagation in an inhomogeneous medium from the reflection coefficient (given for all frequencies) for a one-dimensional wave equation. Following the work of Kay and Moses, we reduce the problem to that of determining a ’’potential’’ for a Schrödinger-type equation. However, in our work this ’’potential’’ depends quadratically on the wavenumber, and this dependence changes the structure of the spectral function and integral equations of the inverse problem. In the first part of the paper, we assume that the wave velocity c (x) has the same value at x=+∞ and at x=−∞. Then we relax this condition on c (x) and consider the cases where c (+∞) is different from c (−∞), but both quantities have well-defined values. For certain types of velocities, we obtain the reflection coefficient analytically. We then use these reflection coefficients to get approximate solutions to the inverse problem. Finally, we present an example of a heterogeneous medium which is transparent for all frequencies of the incident wave. Subject Classification: 20.30, 20.35, 20.15.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNotkE1Lw0AYhBdRMFbBn7BHL6nvfiXZo9RPKHjRo4Rk8752JdmVbFrpvze2XmZ4DjMMw9i1gKUQUtyKpaqgNMUJy4SRkFdG6lOWAYDItS2Kc3aR0teMplI2Yx_3OOE4-NBMPgYeiU8b5D_NDvkO--j8tOc-8CbMuolD_MSAcZv4gJ3fDpzGOBwSI1KP7tDhIhJ55zFMl-yMmj7h1b8v2Pvjw9vqOV-_Pr2s7ta5k9JMeQUFVWigaAWR0dp2rqGZDLbKCUDodElWKERpFYKW1Ja2VFUHJcq202rBbo69bowpzVvq79EPzbivBdR_t9SiPt6ifgGni1YS</recordid><startdate>19750101</startdate><enddate>19750101</enddate><creator>Razavy, M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19750101</creationdate><title>Determination of the wave velocity in an inhomogeneous medium from the reflection coefficient</title><author>Razavy, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-806f8e506b1ff5449dcaf06b5eb3c10e0d47f913ee293e042fb79738d07e2bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razavy, M.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razavy, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the wave velocity in an inhomogeneous medium from the reflection coefficient</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1975-01-01</date><risdate>1975</risdate><volume>58</volume><issue>5</issue><spage>956</spage><epage>963</epage><pages>956-963</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>In this paper, we study the problem of obtaining the velocity of the wave propagation in an inhomogeneous medium from the reflection coefficient (given for all frequencies) for a one-dimensional wave equation. Following the work of Kay and Moses, we reduce the problem to that of determining a ’’potential’’ for a Schrödinger-type equation. However, in our work this ’’potential’’ depends quadratically on the wavenumber, and this dependence changes the structure of the spectral function and integral equations of the inverse problem. In the first part of the paper, we assume that the wave velocity c (x) has the same value at x=+∞ and at x=−∞. Then we relax this condition on c (x) and consider the cases where c (+∞) is different from c (−∞), but both quantities have well-defined values. For certain types of velocities, we obtain the reflection coefficient analytically. We then use these reflection coefficients to get approximate solutions to the inverse problem. Finally, we present an example of a heterogeneous medium which is transparent for all frequencies of the incident wave. Subject Classification: 20.30, 20.35, 20.15.</abstract><doi>10.1121/1.380756</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1975-01, Vol.58 (5), p.956-963
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_380756
source AIP Acoustical Society of America
title Determination of the wave velocity in an inhomogeneous medium from the reflection coefficient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20wave%20velocity%20in%20an%20inhomogeneous%20medium%20from%20the%20reflection%20coefficient&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Razavy,%20M.&rft.date=1975-01-01&rft.volume=58&rft.issue=5&rft.spage=956&rft.epage=963&rft.pages=956-963&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.380756&rft_dat=%3Ccrossref%3E10_1121_1_380756%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true