Speech classification using penalized logistic regression with hidden Markov model log-likelihood regressors

Penalized logistic regression (PLR) is a well-founded discriminative classifier with long roots in the history of statistics. Speech classification with PLR is possible with an appropriate choice of map from the space of feature vector sequences into the Euclidean space. In this talk, one such map i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2010-03, Vol.127 (3_Supplement), p.2040-2040
Hauptverfasser: Birkenes, Øystein, Matsui, Tomoko, Tanabe, Kunio, Johnsen, Magne Hallstein
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2040
container_issue 3_Supplement
container_start_page 2040
container_title The Journal of the Acoustical Society of America
container_volume 127
creator Birkenes, Øystein
Matsui, Tomoko
Tanabe, Kunio
Johnsen, Magne Hallstein
description Penalized logistic regression (PLR) is a well-founded discriminative classifier with long roots in the history of statistics. Speech classification with PLR is possible with an appropriate choice of map from the space of feature vector sequences into the Euclidean space. In this talk, one such map is presented, namely, the one that maps into vectors consisting of log-likelihoods computed from a set of hidden Markov models (HMMs). The use of this map in PLR leads to a powerful discriminative classifier that naturally handles the sequential data arising in speech classification. In the training phase, the HMM parameters and the regression parameters are jointly estimated by maximizing a penalized likelihood. The proposed approach is shown to be a generalization of conditional maximum likelihood (CML) and maximum mutual information (MMI) estimation for speech classification, leading to more flexible decision boundaries and higher classification accuracy. The posterior probabilities resulting from classification with PLR allow for continuous speech recognition via N-best or lattice rescoring.
doi_str_mv 10.1121/1.3385371
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_3385371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_3385371</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1121_1_33853713</originalsourceid><addsrcrecordid>eNqVz7FuwjAUBVALUYlAO_AHXhkCfjGBMKNWXTq1u2XZL8krJo780iL69Q0S_YBOV1c6d7hCLEGtAQrYwFrrqtR7mIgMykLlVVlspyJTSkG-Pex2MzFn_hxrWelDJsJ7j-ha6YJlppqcHSh28oupa2SPnQ30g16G2BAP5GTCJuEoR3OhoZUteY-dfLPpFL_lOXoMN5wHOmGgNkb_N4mJH8VDbQPj0z0XYvXy_HF8zV2KzAlr0yc623Q1oMztjgFzv6P_Y38BjTFSJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Speech classification using penalized logistic regression with hidden Markov model log-likelihood regressors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Birkenes, Øystein ; Matsui, Tomoko ; Tanabe, Kunio ; Johnsen, Magne Hallstein</creator><creatorcontrib>Birkenes, Øystein ; Matsui, Tomoko ; Tanabe, Kunio ; Johnsen, Magne Hallstein</creatorcontrib><description>Penalized logistic regression (PLR) is a well-founded discriminative classifier with long roots in the history of statistics. Speech classification with PLR is possible with an appropriate choice of map from the space of feature vector sequences into the Euclidean space. In this talk, one such map is presented, namely, the one that maps into vectors consisting of log-likelihoods computed from a set of hidden Markov models (HMMs). The use of this map in PLR leads to a powerful discriminative classifier that naturally handles the sequential data arising in speech classification. In the training phase, the HMM parameters and the regression parameters are jointly estimated by maximizing a penalized likelihood. The proposed approach is shown to be a generalization of conditional maximum likelihood (CML) and maximum mutual information (MMI) estimation for speech classification, leading to more flexible decision boundaries and higher classification accuracy. The posterior probabilities resulting from classification with PLR allow for continuous speech recognition via N-best or lattice rescoring.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.3385371</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2010-03, Vol.127 (3_Supplement), p.2040-2040</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Birkenes, Øystein</creatorcontrib><creatorcontrib>Matsui, Tomoko</creatorcontrib><creatorcontrib>Tanabe, Kunio</creatorcontrib><creatorcontrib>Johnsen, Magne Hallstein</creatorcontrib><title>Speech classification using penalized logistic regression with hidden Markov model log-likelihood regressors</title><title>The Journal of the Acoustical Society of America</title><description>Penalized logistic regression (PLR) is a well-founded discriminative classifier with long roots in the history of statistics. Speech classification with PLR is possible with an appropriate choice of map from the space of feature vector sequences into the Euclidean space. In this talk, one such map is presented, namely, the one that maps into vectors consisting of log-likelihoods computed from a set of hidden Markov models (HMMs). The use of this map in PLR leads to a powerful discriminative classifier that naturally handles the sequential data arising in speech classification. In the training phase, the HMM parameters and the regression parameters are jointly estimated by maximizing a penalized likelihood. The proposed approach is shown to be a generalization of conditional maximum likelihood (CML) and maximum mutual information (MMI) estimation for speech classification, leading to more flexible decision boundaries and higher classification accuracy. The posterior probabilities resulting from classification with PLR allow for continuous speech recognition via N-best or lattice rescoring.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqVz7FuwjAUBVALUYlAO_AHXhkCfjGBMKNWXTq1u2XZL8krJo780iL69Q0S_YBOV1c6d7hCLEGtAQrYwFrrqtR7mIgMykLlVVlspyJTSkG-Pex2MzFn_hxrWelDJsJ7j-ha6YJlppqcHSh28oupa2SPnQ30g16G2BAP5GTCJuEoR3OhoZUteY-dfLPpFL_lOXoMN5wHOmGgNkb_N4mJH8VDbQPj0z0XYvXy_HF8zV2KzAlr0yc623Q1oMztjgFzv6P_Y38BjTFSJA</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Birkenes, Øystein</creator><creator>Matsui, Tomoko</creator><creator>Tanabe, Kunio</creator><creator>Johnsen, Magne Hallstein</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100301</creationdate><title>Speech classification using penalized logistic regression with hidden Markov model log-likelihood regressors</title><author>Birkenes, Øystein ; Matsui, Tomoko ; Tanabe, Kunio ; Johnsen, Magne Hallstein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1121_1_33853713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birkenes, Øystein</creatorcontrib><creatorcontrib>Matsui, Tomoko</creatorcontrib><creatorcontrib>Tanabe, Kunio</creatorcontrib><creatorcontrib>Johnsen, Magne Hallstein</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birkenes, Øystein</au><au>Matsui, Tomoko</au><au>Tanabe, Kunio</au><au>Johnsen, Magne Hallstein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speech classification using penalized logistic regression with hidden Markov model log-likelihood regressors</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>127</volume><issue>3_Supplement</issue><spage>2040</spage><epage>2040</epage><pages>2040-2040</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Penalized logistic regression (PLR) is a well-founded discriminative classifier with long roots in the history of statistics. Speech classification with PLR is possible with an appropriate choice of map from the space of feature vector sequences into the Euclidean space. In this talk, one such map is presented, namely, the one that maps into vectors consisting of log-likelihoods computed from a set of hidden Markov models (HMMs). The use of this map in PLR leads to a powerful discriminative classifier that naturally handles the sequential data arising in speech classification. In the training phase, the HMM parameters and the regression parameters are jointly estimated by maximizing a penalized likelihood. The proposed approach is shown to be a generalization of conditional maximum likelihood (CML) and maximum mutual information (MMI) estimation for speech classification, leading to more flexible decision boundaries and higher classification accuracy. The posterior probabilities resulting from classification with PLR allow for continuous speech recognition via N-best or lattice rescoring.</abstract><doi>10.1121/1.3385371</doi></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2010-03, Vol.127 (3_Supplement), p.2040-2040
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_3385371
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Speech classification using penalized logistic regression with hidden Markov model log-likelihood regressors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speech%20classification%20using%20penalized%20logistic%20regression%20with%20hidden%20Markov%20model%20log-likelihood%20regressors&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Birkenes,%20%C3%98ystein&rft.date=2010-03-01&rft.volume=127&rft.issue=3_Supplement&rft.spage=2040&rft.epage=2040&rft.pages=2040-2040&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.3385371&rft_dat=%3Ccrossref%3E10_1121_1_3385371%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true