Numerical experiments on weak shock propagation in marine sediments
NRL is planning a set of laboratory and field experiments to investigate weak shock propagation in saturated marine sediments. Questions to be addressed are as follows: (1) How much does the granular content of the sediment increase the effective nonlinearity coefficient? (2) Does the 3/2 order Hert...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2010-03, Vol.127 (3_Supplement), p.1938-1938 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1938 |
---|---|
container_issue | 3_Supplement |
container_start_page | 1938 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 127 |
creator | McDonald, B. Edward |
description | NRL is planning a set of laboratory and field experiments to investigate weak shock propagation in saturated marine sediments. Questions to be addressed are as follows: (1) How much does the granular content of the sediment increase the effective nonlinearity coefficient? (2) Does the 3/2 order Hertzian nonlinearity inherent to grain contacts play a significant role? Numerical and analytic solutions involving the Hertzian nonlinearity reveal maximum nonlinearity coefficient near zero stress, whereas in a fluid, nonlinearity increases with stress. Numerical experiments are presented using the NPE model [McDonald and Kuperman, J. Acoust. Soc. Am. 81, 1406 (1987)] to determine whether shocks resulting from Hertzian nonlinearity can be observed in the presence of nominal values of frequency-linear attenuation common to granular media. [Work supported by the Office of Naval Research.] |
doi_str_mv | 10.1121/1.3384881 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_3384881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_3384881</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1121_1_33848813</originalsourceid><addsrcrecordid>eNqVjrsOgjAYhRujiXgZfIOuDmB_CqTMROPk5N40WLQCbdNi1Le3Rl7A6Vzy5eQgtAGSAKSwg4RSljEGExRBnpKY5Wk2RREhBOKsLIo5Wnh_DzFntIxQdXr00qladFi-bHC91IPHRuOnFC32N1O32DpjxVUMKtRK4144pSX28vKjV2jWiM7L9ahLtD3sz9Uxrp3x3smG27Ar3JsD4d-XHPj4kv7DfgD10kIu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical experiments on weak shock propagation in marine sediments</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>McDonald, B. Edward</creator><creatorcontrib>McDonald, B. Edward</creatorcontrib><description>NRL is planning a set of laboratory and field experiments to investigate weak shock propagation in saturated marine sediments. Questions to be addressed are as follows: (1) How much does the granular content of the sediment increase the effective nonlinearity coefficient? (2) Does the 3/2 order Hertzian nonlinearity inherent to grain contacts play a significant role? Numerical and analytic solutions involving the Hertzian nonlinearity reveal maximum nonlinearity coefficient near zero stress, whereas in a fluid, nonlinearity increases with stress. Numerical experiments are presented using the NPE model [McDonald and Kuperman, J. Acoust. Soc. Am. 81, 1406 (1987)] to determine whether shocks resulting from Hertzian nonlinearity can be observed in the presence of nominal values of frequency-linear attenuation common to granular media. [Work supported by the Office of Naval Research.]</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.3384881</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2010-03, Vol.127 (3_Supplement), p.1938-1938</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>McDonald, B. Edward</creatorcontrib><title>Numerical experiments on weak shock propagation in marine sediments</title><title>The Journal of the Acoustical Society of America</title><description>NRL is planning a set of laboratory and field experiments to investigate weak shock propagation in saturated marine sediments. Questions to be addressed are as follows: (1) How much does the granular content of the sediment increase the effective nonlinearity coefficient? (2) Does the 3/2 order Hertzian nonlinearity inherent to grain contacts play a significant role? Numerical and analytic solutions involving the Hertzian nonlinearity reveal maximum nonlinearity coefficient near zero stress, whereas in a fluid, nonlinearity increases with stress. Numerical experiments are presented using the NPE model [McDonald and Kuperman, J. Acoust. Soc. Am. 81, 1406 (1987)] to determine whether shocks resulting from Hertzian nonlinearity can be observed in the presence of nominal values of frequency-linear attenuation common to granular media. [Work supported by the Office of Naval Research.]</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqVjrsOgjAYhRujiXgZfIOuDmB_CqTMROPk5N40WLQCbdNi1Le3Rl7A6Vzy5eQgtAGSAKSwg4RSljEGExRBnpKY5Wk2RREhBOKsLIo5Wnh_DzFntIxQdXr00qladFi-bHC91IPHRuOnFC32N1O32DpjxVUMKtRK4144pSX28vKjV2jWiM7L9ahLtD3sz9Uxrp3x3smG27Ar3JsD4d-XHPj4kv7DfgD10kIu</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>McDonald, B. Edward</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100301</creationdate><title>Numerical experiments on weak shock propagation in marine sediments</title><author>McDonald, B. Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1121_1_33848813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonald, B. Edward</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonald, B. Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical experiments on weak shock propagation in marine sediments</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>127</volume><issue>3_Supplement</issue><spage>1938</spage><epage>1938</epage><pages>1938-1938</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>NRL is planning a set of laboratory and field experiments to investigate weak shock propagation in saturated marine sediments. Questions to be addressed are as follows: (1) How much does the granular content of the sediment increase the effective nonlinearity coefficient? (2) Does the 3/2 order Hertzian nonlinearity inherent to grain contacts play a significant role? Numerical and analytic solutions involving the Hertzian nonlinearity reveal maximum nonlinearity coefficient near zero stress, whereas in a fluid, nonlinearity increases with stress. Numerical experiments are presented using the NPE model [McDonald and Kuperman, J. Acoust. Soc. Am. 81, 1406 (1987)] to determine whether shocks resulting from Hertzian nonlinearity can be observed in the presence of nominal values of frequency-linear attenuation common to granular media. [Work supported by the Office of Naval Research.]</abstract><doi>10.1121/1.3384881</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2010-03, Vol.127 (3_Supplement), p.1938-1938 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_crossref_primary_10_1121_1_3384881 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | Numerical experiments on weak shock propagation in marine sediments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20experiments%20on%20weak%20shock%20propagation%20in%20marine%20sediments&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=McDonald,%20B.%20Edward&rft.date=2010-03-01&rft.volume=127&rft.issue=3_Supplement&rft.spage=1938&rft.epage=1938&rft.pages=1938-1938&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.3384881&rft_dat=%3Ccrossref%3E10_1121_1_3384881%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |