Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices

Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2008-03, Vol.123 (3), p.1364-1370
Hauptverfasser: Thompson, Stephen C., LoPresti, Janice L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1370
container_issue 3
container_start_page 1364
container_title The Journal of the Acoustical Society of America
container_volume 123
creator Thompson, Stephen C.
LoPresti, Janice L.
description Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range from adiabatic to isothermal conditions in the enclosure. The effect is equivalent to placing an additional, frequency-dependent complex impedance in parallel with the adiabatic compliance. As the thermal boundary layer grows to fill the cavity, the reactive part of the impedance varies smoothly from the adiabatic value to the isothermal value. In some microphones, this change in cavity stiffness is sufficient to modify the sensitivity. The resistive part of the additional cavity impedance varies as the inverse square root of frequency at high frequencies where the boundary layer has not grown to fill the enclosure. The thermal modification gives rise to a thermal noise whose spectral density varies asymptotically as l ∕ f 3 ∕ 2 above the isothermal transition frequency.
doi_str_mv 10.1121/1.2832314
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_2832314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18345825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-8174b4a79193942d87b403e3cd36a9c9ec103962a2408b319a1eef054e6adff33</originalsourceid><addsrcrecordid>eNp1kUtPxCAUhYnROONj4R8wbFy4qHKBdmBjYoyvxMSNrhtKL07NDIzQGuffi5n62Li64fBxyTmHkCNgZwAczuGMK8EFyC0yhZKzQpVcbpMpYwwKqatqQvZSes3HUgm9SyaghCwVL6fk42mOcWkWtAmDb01c04VZY6ToHNo-0eBpP0dqbBhS39kMdssVtsZbpMFR9HYR0hAxUeNbaoNP-DZkNQsuxL_vEvrU-Rfa4nuXrw_IjjOLhIfj3CfPN9dPV3fFw-Pt_dXlQ2ElE32hYCYbaWYatNCSt2rWZB2FbUVltNVogQldccMlU40AbQDRsVJiZVrnhNgnp5u9NoaUIrp6FbtlNloDq7_Sq6Ee08vs8YZdDc0S219yjCsDJyNgUvbkYs6hSz8cZ6C5nqnMXWy4ZLve9F3w__86FlB_F1DnAsQn8QmOLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices</title><source>MEDLINE</source><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Thompson, Stephen C. ; LoPresti, Janice L.</creator><creatorcontrib>Thompson, Stephen C. ; LoPresti, Janice L.</creatorcontrib><description>Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range from adiabatic to isothermal conditions in the enclosure. The effect is equivalent to placing an additional, frequency-dependent complex impedance in parallel with the adiabatic compliance. As the thermal boundary layer grows to fill the cavity, the reactive part of the impedance varies smoothly from the adiabatic value to the isothermal value. In some microphones, this change in cavity stiffness is sufficient to modify the sensitivity. The resistive part of the additional cavity impedance varies as the inverse square root of frequency at high frequencies where the boundary layer has not grown to fill the enclosure. The thermal modification gives rise to a thermal noise whose spectral density varies asymptotically as l ∕ f 3 ∕ 2 above the isothermal transition frequency.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2832314</identifier><identifier>PMID: 18345825</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Acoustics - instrumentation ; Electric Impedance ; Equipment Design ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Models, Theoretical ; Noise ; Physics ; Temperature ; Transduction; acoustical devices for the generation and reproduction of sound</subject><ispartof>The Journal of the Acoustical Society of America, 2008-03, Vol.123 (3), p.1364-1370</ispartof><rights>2008 Acoustical Society of America</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-8174b4a79193942d87b403e3cd36a9c9ec103962a2408b319a1eef054e6adff33</citedby><cites>FETCH-LOGICAL-c403t-8174b4a79193942d87b403e3cd36a9c9ec103962a2408b319a1eef054e6adff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.2832314$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20192978$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18345825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Stephen C.</creatorcontrib><creatorcontrib>LoPresti, Janice L.</creatorcontrib><title>Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range from adiabatic to isothermal conditions in the enclosure. The effect is equivalent to placing an additional, frequency-dependent complex impedance in parallel with the adiabatic compliance. As the thermal boundary layer grows to fill the cavity, the reactive part of the impedance varies smoothly from the adiabatic value to the isothermal value. In some microphones, this change in cavity stiffness is sufficient to modify the sensitivity. The resistive part of the additional cavity impedance varies as the inverse square root of frequency at high frequencies where the boundary layer has not grown to fill the enclosure. The thermal modification gives rise to a thermal noise whose spectral density varies asymptotically as l ∕ f 3 ∕ 2 above the isothermal transition frequency.</description><subject>Acoustics</subject><subject>Acoustics - instrumentation</subject><subject>Electric Impedance</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Models, Theoretical</subject><subject>Noise</subject><subject>Physics</subject><subject>Temperature</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtPxCAUhYnROONj4R8wbFy4qHKBdmBjYoyvxMSNrhtKL07NDIzQGuffi5n62Li64fBxyTmHkCNgZwAczuGMK8EFyC0yhZKzQpVcbpMpYwwKqatqQvZSes3HUgm9SyaghCwVL6fk42mOcWkWtAmDb01c04VZY6ToHNo-0eBpP0dqbBhS39kMdssVtsZbpMFR9HYR0hAxUeNbaoNP-DZkNQsuxL_vEvrU-Rfa4nuXrw_IjjOLhIfj3CfPN9dPV3fFw-Pt_dXlQ2ElE32hYCYbaWYatNCSt2rWZB2FbUVltNVogQldccMlU40AbQDRsVJiZVrnhNgnp5u9NoaUIrp6FbtlNloDq7_Sq6Ee08vs8YZdDc0S219yjCsDJyNgUvbkYs6hSz8cZ6C5nqnMXWy4ZLve9F3w__86FlB_F1DnAsQn8QmOLg</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Thompson, Stephen C.</creator><creator>LoPresti, Janice L.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080301</creationdate><title>Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices</title><author>Thompson, Stephen C. ; LoPresti, Janice L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-8174b4a79193942d87b403e3cd36a9c9ec103962a2408b319a1eef054e6adff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustics</topic><topic>Acoustics - instrumentation</topic><topic>Electric Impedance</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Models, Theoretical</topic><topic>Noise</topic><topic>Physics</topic><topic>Temperature</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Stephen C.</creatorcontrib><creatorcontrib>LoPresti, Janice L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Stephen C.</au><au>LoPresti, Janice L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>123</volume><issue>3</issue><spage>1364</spage><epage>1370</epage><pages>1364-1370</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range from adiabatic to isothermal conditions in the enclosure. The effect is equivalent to placing an additional, frequency-dependent complex impedance in parallel with the adiabatic compliance. As the thermal boundary layer grows to fill the cavity, the reactive part of the impedance varies smoothly from the adiabatic value to the isothermal value. In some microphones, this change in cavity stiffness is sufficient to modify the sensitivity. The resistive part of the additional cavity impedance varies as the inverse square root of frequency at high frequencies where the boundary layer has not grown to fill the enclosure. The thermal modification gives rise to a thermal noise whose spectral density varies asymptotically as l ∕ f 3 ∕ 2 above the isothermal transition frequency.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>18345825</pmid><doi>10.1121/1.2832314</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2008-03, Vol.123 (3), p.1364-1370
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_2832314
source MEDLINE; American Institute of Physics (AIP) Journals; Alma/SFX Local Collection; AIP Acoustical Society of America
subjects Acoustics
Acoustics - instrumentation
Electric Impedance
Equipment Design
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Models, Theoretical
Noise
Physics
Temperature
Transduction
acoustical devices for the generation and reproduction of sound
title Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20boundary%20layer%20effects%20on%20the%20acoustical%20impedance%20of%20enclosures%20and%20consequences%20for%20acoustical%20sensing%20devices&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Thompson,%20Stephen%20C.&rft.date=2008-03-01&rft.volume=123&rft.issue=3&rft.spage=1364&rft.epage=1370&rft.pages=1364-1370&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.2832314&rft_dat=%3Cpubmed_cross%3E18345825%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18345825&rfr_iscdi=true