Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices
Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2008-03, Vol.123 (3), p.1364-1370 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1370 |
---|---|
container_issue | 3 |
container_start_page | 1364 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 123 |
creator | Thompson, Stephen C. LoPresti, Janice L. |
description | Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range from adiabatic to isothermal conditions in the enclosure. The effect is equivalent to placing an additional, frequency-dependent complex impedance in parallel with the adiabatic compliance. As the thermal boundary layer grows to fill the cavity, the reactive part of the impedance varies smoothly from the adiabatic value to the isothermal value. In some microphones, this change in cavity stiffness is sufficient to modify the sensitivity. The resistive part of the additional cavity impedance varies as the inverse square root of frequency at high frequencies where the boundary layer has not grown to fill the enclosure. The thermal modification gives rise to a thermal noise whose spectral density varies asymptotically as
l
∕
f
3
∕
2
above the isothermal transition frequency. |
doi_str_mv | 10.1121/1.2832314 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_2832314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18345825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-8174b4a79193942d87b403e3cd36a9c9ec103962a2408b319a1eef054e6adff33</originalsourceid><addsrcrecordid>eNp1kUtPxCAUhYnROONj4R8wbFy4qHKBdmBjYoyvxMSNrhtKL07NDIzQGuffi5n62Li64fBxyTmHkCNgZwAczuGMK8EFyC0yhZKzQpVcbpMpYwwKqatqQvZSes3HUgm9SyaghCwVL6fk42mOcWkWtAmDb01c04VZY6ToHNo-0eBpP0dqbBhS39kMdssVtsZbpMFR9HYR0hAxUeNbaoNP-DZkNQsuxL_vEvrU-Rfa4nuXrw_IjjOLhIfj3CfPN9dPV3fFw-Pt_dXlQ2ElE32hYCYbaWYatNCSt2rWZB2FbUVltNVogQldccMlU40AbQDRsVJiZVrnhNgnp5u9NoaUIrp6FbtlNloDq7_Sq6Ee08vs8YZdDc0S219yjCsDJyNgUvbkYs6hSz8cZ6C5nqnMXWy4ZLve9F3w__86FlB_F1DnAsQn8QmOLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices</title><source>MEDLINE</source><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Thompson, Stephen C. ; LoPresti, Janice L.</creator><creatorcontrib>Thompson, Stephen C. ; LoPresti, Janice L.</creatorcontrib><description>Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range from adiabatic to isothermal conditions in the enclosure. The effect is equivalent to placing an additional, frequency-dependent complex impedance in parallel with the adiabatic compliance. As the thermal boundary layer grows to fill the cavity, the reactive part of the impedance varies smoothly from the adiabatic value to the isothermal value. In some microphones, this change in cavity stiffness is sufficient to modify the sensitivity. The resistive part of the additional cavity impedance varies as the inverse square root of frequency at high frequencies where the boundary layer has not grown to fill the enclosure. The thermal modification gives rise to a thermal noise whose spectral density varies asymptotically as
l
∕
f
3
∕
2
above the isothermal transition frequency.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2832314</identifier><identifier>PMID: 18345825</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Acoustics - instrumentation ; Electric Impedance ; Equipment Design ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Models, Theoretical ; Noise ; Physics ; Temperature ; Transduction; acoustical devices for the generation and reproduction of sound</subject><ispartof>The Journal of the Acoustical Society of America, 2008-03, Vol.123 (3), p.1364-1370</ispartof><rights>2008 Acoustical Society of America</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-8174b4a79193942d87b403e3cd36a9c9ec103962a2408b319a1eef054e6adff33</citedby><cites>FETCH-LOGICAL-c403t-8174b4a79193942d87b403e3cd36a9c9ec103962a2408b319a1eef054e6adff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.2832314$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20192978$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18345825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Stephen C.</creatorcontrib><creatorcontrib>LoPresti, Janice L.</creatorcontrib><title>Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range from adiabatic to isothermal conditions in the enclosure. The effect is equivalent to placing an additional, frequency-dependent complex impedance in parallel with the adiabatic compliance. As the thermal boundary layer grows to fill the cavity, the reactive part of the impedance varies smoothly from the adiabatic value to the isothermal value. In some microphones, this change in cavity stiffness is sufficient to modify the sensitivity. The resistive part of the additional cavity impedance varies as the inverse square root of frequency at high frequencies where the boundary layer has not grown to fill the enclosure. The thermal modification gives rise to a thermal noise whose spectral density varies asymptotically as
l
∕
f
3
∕
2
above the isothermal transition frequency.</description><subject>Acoustics</subject><subject>Acoustics - instrumentation</subject><subject>Electric Impedance</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Models, Theoretical</subject><subject>Noise</subject><subject>Physics</subject><subject>Temperature</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtPxCAUhYnROONj4R8wbFy4qHKBdmBjYoyvxMSNrhtKL07NDIzQGuffi5n62Li64fBxyTmHkCNgZwAczuGMK8EFyC0yhZKzQpVcbpMpYwwKqatqQvZSes3HUgm9SyaghCwVL6fk42mOcWkWtAmDb01c04VZY6ToHNo-0eBpP0dqbBhS39kMdssVtsZbpMFR9HYR0hAxUeNbaoNP-DZkNQsuxL_vEvrU-Rfa4nuXrw_IjjOLhIfj3CfPN9dPV3fFw-Pt_dXlQ2ElE32hYCYbaWYatNCSt2rWZB2FbUVltNVogQldccMlU40AbQDRsVJiZVrnhNgnp5u9NoaUIrp6FbtlNloDq7_Sq6Ee08vs8YZdDc0S219yjCsDJyNgUvbkYs6hSz8cZ6C5nqnMXWy4ZLve9F3w__86FlB_F1DnAsQn8QmOLg</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Thompson, Stephen C.</creator><creator>LoPresti, Janice L.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080301</creationdate><title>Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices</title><author>Thompson, Stephen C. ; LoPresti, Janice L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-8174b4a79193942d87b403e3cd36a9c9ec103962a2408b319a1eef054e6adff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustics</topic><topic>Acoustics - instrumentation</topic><topic>Electric Impedance</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Models, Theoretical</topic><topic>Noise</topic><topic>Physics</topic><topic>Temperature</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Stephen C.</creatorcontrib><creatorcontrib>LoPresti, Janice L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Stephen C.</au><au>LoPresti, Janice L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>123</volume><issue>3</issue><spage>1364</spage><epage>1370</epage><pages>1364-1370</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range from adiabatic to isothermal conditions in the enclosure. The effect is equivalent to placing an additional, frequency-dependent complex impedance in parallel with the adiabatic compliance. As the thermal boundary layer grows to fill the cavity, the reactive part of the impedance varies smoothly from the adiabatic value to the isothermal value. In some microphones, this change in cavity stiffness is sufficient to modify the sensitivity. The resistive part of the additional cavity impedance varies as the inverse square root of frequency at high frequencies where the boundary layer has not grown to fill the enclosure. The thermal modification gives rise to a thermal noise whose spectral density varies asymptotically as
l
∕
f
3
∕
2
above the isothermal transition frequency.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>18345825</pmid><doi>10.1121/1.2832314</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2008-03, Vol.123 (3), p.1364-1370 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_crossref_primary_10_1121_1_2832314 |
source | MEDLINE; American Institute of Physics (AIP) Journals; Alma/SFX Local Collection; AIP Acoustical Society of America |
subjects | Acoustics Acoustics - instrumentation Electric Impedance Equipment Design Exact sciences and technology Fundamental areas of phenomenology (including applications) Models, Theoretical Noise Physics Temperature Transduction acoustical devices for the generation and reproduction of sound |
title | Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20boundary%20layer%20effects%20on%20the%20acoustical%20impedance%20of%20enclosures%20and%20consequences%20for%20acoustical%20sensing%20devices&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Thompson,%20Stephen%20C.&rft.date=2008-03-01&rft.volume=123&rft.issue=3&rft.spage=1364&rft.epage=1370&rft.pages=1364-1370&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.2832314&rft_dat=%3Cpubmed_cross%3E18345825%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18345825&rfr_iscdi=true |