Effects of ocean thermocline variability on noncoherent underwater acoustic communications

The performance of acoustic modems in the ocean is strongly affected by the ocean environment. A storm can drive up the ambient noise levels, eliminate a thermocline by wind mixing, and whip up violent waves and thereby break up the acoustic mirror formed by the ocean surface. The combined effects o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2007-04, Vol.121 (4), p.1895-1908
Hauptverfasser: Siderius, Martin, Porter, Michael B., Hursky, Paul, McDonald, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of acoustic modems in the ocean is strongly affected by the ocean environment. A storm can drive up the ambient noise levels, eliminate a thermocline by wind mixing, and whip up violent waves and thereby break up the acoustic mirror formed by the ocean surface. The combined effects of these and other processes on modem performance are not well understood. The authors have been conducting experiments to study these environmental effects on various modulation schemes. Here the focus is on the role of the thermocline on a widely used modulation scheme (frequency-shift keying). Using data from a recent experiment conducted in 100-m-deep water off the coast of Kauai, HI, frequency-shift-key modulation performance is shown to be strongly affected by diurnal cycles in the thermocline. There is dramatic variation in performance (measured by bit error rates) between receivers in the surface duct and receivers in the thermocline. To interpret the performance variations in a quantitative way, a precise metric is introduced based on a signal-to-interference-noise ratio that encompasses both the ambient noise and intersymbol interference. Further, it will be shown that differences in the fading statistics for receivers in and out of the thermocline explain the differences in modem performance.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.2436630