A simple shallow water propagation model including shear wave effects

The Perkeris model has proved to be very useful in describing some features of acoustic propagation in shallow water, and as a simple test of ideas in normal mode theory. The basic model consists of a homogeneous layer of fluid overlying an infinite homogeneous fluid half-space of greater sound spee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1984-10, Vol.76 (S1), p.S84-S85
Hauptverfasser: Ellis, Dale D., Chapman, D. M. F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S85
container_issue S1
container_start_page S84
container_title The Journal of the Acoustical Society of America
container_volume 76
creator Ellis, Dale D.
Chapman, D. M. F.
description The Perkeris model has proved to be very useful in describing some features of acoustic propagation in shallow water, and as a simple test of ideas in normal mode theory. The basic model consists of a homogeneous layer of fluid overlying an infinite homogeneous fluid half-space of greater sound speed. Here we extend the Pekeris model to handle the case of a fluid overlying an elastic basement in which the shear speed is less than the (compressional) speed of sound in the fluid. This gives rise to leaky modes in which both the mode eigenfunctions and eigenvalues are complex. The model predictions are compared to some measured propagation losses for a shallow water site overlying a chalk bottom, where shear-wave conversion at the water-chalk interface causes large losses. The predictions of the simple model explain the very high losses measured at frequencies less than 200 Hz. At higher frequencies the sound speed profile and a thin sediment layer become important, but then an all-fluid normal mode model is in agreement with the measured results.
doi_str_mv 10.1121/1.2022054
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_2022054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_2022054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c694-1fc9703c30f306a7c9b84837c6ae7b4beeca2933bff7d71ef8a09f48af3bc7e53</originalsourceid><addsrcrecordid>eNotj0tLw0AURgdRMFYX_oPZuki980hmZllKtULBTffhZnKnRvJiJlr890bs6uODw4HD2KOAtRBSPIu1BCmh0FcsE4WE3BZSX7MMAESuXVnesruUPpdbWOUyttvw1PZTRzx9YNeNZ37GmSKf4jjhCed2HHg_NtTxdvDdV9MOp4UkjAv3TZxCID-ne3YTsEv0cNkVO77sjtt9fnh_fdtuDrkvnc5F8M6A8gqCghKNd7XVVhlfIpla10QepVOqDsE0RlCwCC5oi0HV3lChVuzpX-vjmFKkUE2x7TH-VAKqv_xKVJd89Qu3DE1t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A simple shallow water propagation model including shear wave effects</title><source>Acoustical Society of America (AIP)</source><creator>Ellis, Dale D. ; Chapman, D. M. F.</creator><creatorcontrib>Ellis, Dale D. ; Chapman, D. M. F.</creatorcontrib><description>The Perkeris model has proved to be very useful in describing some features of acoustic propagation in shallow water, and as a simple test of ideas in normal mode theory. The basic model consists of a homogeneous layer of fluid overlying an infinite homogeneous fluid half-space of greater sound speed. Here we extend the Pekeris model to handle the case of a fluid overlying an elastic basement in which the shear speed is less than the (compressional) speed of sound in the fluid. This gives rise to leaky modes in which both the mode eigenfunctions and eigenvalues are complex. The model predictions are compared to some measured propagation losses for a shallow water site overlying a chalk bottom, where shear-wave conversion at the water-chalk interface causes large losses. The predictions of the simple model explain the very high losses measured at frequencies less than 200 Hz. At higher frequencies the sound speed profile and a thin sediment layer become important, but then an all-fluid normal mode model is in agreement with the measured results.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2022054</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1984-10, Vol.76 (S1), p.S84-S85</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ellis, Dale D.</creatorcontrib><creatorcontrib>Chapman, D. M. F.</creatorcontrib><title>A simple shallow water propagation model including shear wave effects</title><title>The Journal of the Acoustical Society of America</title><description>The Perkeris model has proved to be very useful in describing some features of acoustic propagation in shallow water, and as a simple test of ideas in normal mode theory. The basic model consists of a homogeneous layer of fluid overlying an infinite homogeneous fluid half-space of greater sound speed. Here we extend the Pekeris model to handle the case of a fluid overlying an elastic basement in which the shear speed is less than the (compressional) speed of sound in the fluid. This gives rise to leaky modes in which both the mode eigenfunctions and eigenvalues are complex. The model predictions are compared to some measured propagation losses for a shallow water site overlying a chalk bottom, where shear-wave conversion at the water-chalk interface causes large losses. The predictions of the simple model explain the very high losses measured at frequencies less than 200 Hz. At higher frequencies the sound speed profile and a thin sediment layer become important, but then an all-fluid normal mode model is in agreement with the measured results.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNotj0tLw0AURgdRMFYX_oPZuki980hmZllKtULBTffhZnKnRvJiJlr890bs6uODw4HD2KOAtRBSPIu1BCmh0FcsE4WE3BZSX7MMAESuXVnesruUPpdbWOUyttvw1PZTRzx9YNeNZ37GmSKf4jjhCed2HHg_NtTxdvDdV9MOp4UkjAv3TZxCID-ne3YTsEv0cNkVO77sjtt9fnh_fdtuDrkvnc5F8M6A8gqCghKNd7XVVhlfIpla10QepVOqDsE0RlCwCC5oi0HV3lChVuzpX-vjmFKkUE2x7TH-VAKqv_xKVJd89Qu3DE1t</recordid><startdate>19841001</startdate><enddate>19841001</enddate><creator>Ellis, Dale D.</creator><creator>Chapman, D. M. F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19841001</creationdate><title>A simple shallow water propagation model including shear wave effects</title><author>Ellis, Dale D. ; Chapman, D. M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c694-1fc9703c30f306a7c9b84837c6ae7b4beeca2933bff7d71ef8a09f48af3bc7e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellis, Dale D.</creatorcontrib><creatorcontrib>Chapman, D. M. F.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellis, Dale D.</au><au>Chapman, D. M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple shallow water propagation model including shear wave effects</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1984-10-01</date><risdate>1984</risdate><volume>76</volume><issue>S1</issue><spage>S84</spage><epage>S85</epage><pages>S84-S85</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>The Perkeris model has proved to be very useful in describing some features of acoustic propagation in shallow water, and as a simple test of ideas in normal mode theory. The basic model consists of a homogeneous layer of fluid overlying an infinite homogeneous fluid half-space of greater sound speed. Here we extend the Pekeris model to handle the case of a fluid overlying an elastic basement in which the shear speed is less than the (compressional) speed of sound in the fluid. This gives rise to leaky modes in which both the mode eigenfunctions and eigenvalues are complex. The model predictions are compared to some measured propagation losses for a shallow water site overlying a chalk bottom, where shear-wave conversion at the water-chalk interface causes large losses. The predictions of the simple model explain the very high losses measured at frequencies less than 200 Hz. At higher frequencies the sound speed profile and a thin sediment layer become important, but then an all-fluid normal mode model is in agreement with the measured results.</abstract><doi>10.1121/1.2022054</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1984-10, Vol.76 (S1), p.S84-S85
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_2022054
source Acoustical Society of America (AIP)
title A simple shallow water propagation model including shear wave effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20shallow%20water%20propagation%20model%20including%20shear%20wave%20effects&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Ellis,%20Dale%20D.&rft.date=1984-10-01&rft.volume=76&rft.issue=S1&rft.spage=S84&rft.epage=S85&rft.pages=S84-S85&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.2022054&rft_dat=%3Ccrossref%3E10_1121_1_2022054%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true