Error measures for tomographic estimates of sound velocity

Inversion of perfect (error-free) tomographic data produces an imperfect estimate of the sound speed anomaly. The estimate is in error because the unknown function is sampled by a finite number of rays. This imperfection of the measuring system can be interpreted either in terms of resolution or in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1982-11, Vol.72 (S1), p.S19-S19
Hauptverfasser: Calderone, Denise, New, Ronald, Porter, David L., Eisler, Thomas J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S19
container_issue S1
container_start_page S19
container_title The Journal of the Acoustical Society of America
container_volume 72
creator Calderone, Denise
New, Ronald
Porter, David L.
Eisler, Thomas J.
description Inversion of perfect (error-free) tomographic data produces an imperfect estimate of the sound speed anomaly. The estimate is in error because the unknown function is sampled by a finite number of rays. This imperfection of the measuring system can be interpreted either in terms of resolution or in terms of bias error. In certain instances, the bias interpretation offers significant advantages, particularly when one wishes to quantify the error in the estimate. In this paper, we develop the latter interpretation. Our treatment employs various moments of the resolution kernels of the Backus-Gilbert theory. Methods for calculating bias error bounds as combinations of constants, dependent only on the tomographic configurations, and bounds on the higher order derivatives of the estimated function will be shown. Calculated bounds for a sample configuration will be presented. Use of these bias constants in comparisons of configuration performance will also be discussed.
doi_str_mv 10.1121/1.2019761
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_2019761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_2019761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691-44c9603ffe74b2f6635ada1ecbaf3ba4f3cd81a55080549c5eec98733a16a65c3</originalsourceid><addsrcrecordid>eNotj0tLAzEUhYMoOFYX_oNsXUzNzWsSd1JqFQpuug93MomOdExJpkL_vRG7OnwcOA9C7oEtATg8wpIzsJ2GC9KA4qw1istL0jDGoJVW62tyU8pXRWWEbcjTOueU6RSwHHMoNFaY05Q-Mh4-R09DmccJ5-qkSEs6fg_0J-yTH-fTLbmKuC_h7qwLsntZ71av7fZ987Z63rZe29opvdVMxBg62fOotVA4IATfYxQ9yij8YACVYoYpab0KwVvTCYGgUSsvFuThP9bnVEoO0R1ynZRPDpj7--zAnT-LXyV2SVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Error measures for tomographic estimates of sound velocity</title><source>AIP Acoustical Society of America</source><creator>Calderone, Denise ; New, Ronald ; Porter, David L. ; Eisler, Thomas J.</creator><creatorcontrib>Calderone, Denise ; New, Ronald ; Porter, David L. ; Eisler, Thomas J.</creatorcontrib><description>Inversion of perfect (error-free) tomographic data produces an imperfect estimate of the sound speed anomaly. The estimate is in error because the unknown function is sampled by a finite number of rays. This imperfection of the measuring system can be interpreted either in terms of resolution or in terms of bias error. In certain instances, the bias interpretation offers significant advantages, particularly when one wishes to quantify the error in the estimate. In this paper, we develop the latter interpretation. Our treatment employs various moments of the resolution kernels of the Backus-Gilbert theory. Methods for calculating bias error bounds as combinations of constants, dependent only on the tomographic configurations, and bounds on the higher order derivatives of the estimated function will be shown. Calculated bounds for a sample configuration will be presented. Use of these bias constants in comparisons of configuration performance will also be discussed.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2019761</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1982-11, Vol.72 (S1), p.S19-S19</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Calderone, Denise</creatorcontrib><creatorcontrib>New, Ronald</creatorcontrib><creatorcontrib>Porter, David L.</creatorcontrib><creatorcontrib>Eisler, Thomas J.</creatorcontrib><title>Error measures for tomographic estimates of sound velocity</title><title>The Journal of the Acoustical Society of America</title><description>Inversion of perfect (error-free) tomographic data produces an imperfect estimate of the sound speed anomaly. The estimate is in error because the unknown function is sampled by a finite number of rays. This imperfection of the measuring system can be interpreted either in terms of resolution or in terms of bias error. In certain instances, the bias interpretation offers significant advantages, particularly when one wishes to quantify the error in the estimate. In this paper, we develop the latter interpretation. Our treatment employs various moments of the resolution kernels of the Backus-Gilbert theory. Methods for calculating bias error bounds as combinations of constants, dependent only on the tomographic configurations, and bounds on the higher order derivatives of the estimated function will be shown. Calculated bounds for a sample configuration will be presented. Use of these bias constants in comparisons of configuration performance will also be discussed.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNotj0tLAzEUhYMoOFYX_oNsXUzNzWsSd1JqFQpuug93MomOdExJpkL_vRG7OnwcOA9C7oEtATg8wpIzsJ2GC9KA4qw1istL0jDGoJVW62tyU8pXRWWEbcjTOueU6RSwHHMoNFaY05Q-Mh4-R09DmccJ5-qkSEs6fg_0J-yTH-fTLbmKuC_h7qwLsntZ71av7fZ987Z63rZe29opvdVMxBg62fOotVA4IATfYxQ9yij8YACVYoYpab0KwVvTCYGgUSsvFuThP9bnVEoO0R1ynZRPDpj7--zAnT-LXyV2SVI</recordid><startdate>19821101</startdate><enddate>19821101</enddate><creator>Calderone, Denise</creator><creator>New, Ronald</creator><creator>Porter, David L.</creator><creator>Eisler, Thomas J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19821101</creationdate><title>Error measures for tomographic estimates of sound velocity</title><author>Calderone, Denise ; New, Ronald ; Porter, David L. ; Eisler, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691-44c9603ffe74b2f6635ada1ecbaf3ba4f3cd81a55080549c5eec98733a16a65c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calderone, Denise</creatorcontrib><creatorcontrib>New, Ronald</creatorcontrib><creatorcontrib>Porter, David L.</creatorcontrib><creatorcontrib>Eisler, Thomas J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calderone, Denise</au><au>New, Ronald</au><au>Porter, David L.</au><au>Eisler, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error measures for tomographic estimates of sound velocity</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1982-11-01</date><risdate>1982</risdate><volume>72</volume><issue>S1</issue><spage>S19</spage><epage>S19</epage><pages>S19-S19</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Inversion of perfect (error-free) tomographic data produces an imperfect estimate of the sound speed anomaly. The estimate is in error because the unknown function is sampled by a finite number of rays. This imperfection of the measuring system can be interpreted either in terms of resolution or in terms of bias error. In certain instances, the bias interpretation offers significant advantages, particularly when one wishes to quantify the error in the estimate. In this paper, we develop the latter interpretation. Our treatment employs various moments of the resolution kernels of the Backus-Gilbert theory. Methods for calculating bias error bounds as combinations of constants, dependent only on the tomographic configurations, and bounds on the higher order derivatives of the estimated function will be shown. Calculated bounds for a sample configuration will be presented. Use of these bias constants in comparisons of configuration performance will also be discussed.</abstract><doi>10.1121/1.2019761</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1982-11, Vol.72 (S1), p.S19-S19
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_2019761
source AIP Acoustical Society of America
title Error measures for tomographic estimates of sound velocity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20measures%20for%20tomographic%20estimates%20of%20sound%20velocity&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Calderone,%20Denise&rft.date=1982-11-01&rft.volume=72&rft.issue=S1&rft.spage=S19&rft.epage=S19&rft.pages=S19-S19&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.2019761&rft_dat=%3Ccrossref%3E10_1121_1_2019761%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true