Excitation of a Helmholtz resonator under a turbulent boundary layer

A zero-pressure-gradient boundary layer on the fuselage of a glider was used to excite a Helmholtz resonator. The resonator was constructed so the orifice was flush with the surface. Nominal resonator frequencies were chosen so they would tune with different portions of the boundary layer wall press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1975-04, Vol.57 (S1), p.S57-S57
Hauptverfasser: Panton, R. L., Miller, J. M.
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S57
container_issue S1
container_start_page S57
container_title The Journal of the Acoustical Society of America
container_volume 57
creator Panton, R. L.
Miller, J. M.
description A zero-pressure-gradient boundary layer on the fuselage of a glider was used to excite a Helmholtz resonator. The resonator was constructed so the orifice was flush with the surface. Nominal resonator frequencies were chosen so they would tune with different portions of the boundary layer wall pressure spectrum. The resonators were excited at both the Helmholtz frequency and a standing wave frequency. The results show a shift in the Helmholtz frequency when the boundary layer is present. This shift indicates the degree to which the turbulence interacts with the acoustic motion in the orifice and modifies the end correction. In several cases extremely high cavity responses were observed. These cases produced measurable sound in the free stream. The existence of this phenomenon correlates with the parameter ωd/u* (ω = resonance frequency, d = orifice diameter, u* = friction velocity). [This work was supported by NASA Ames Research Center.]
doi_str_mv 10.1121/1.1995314
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_1995314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_1995314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1402-8bd66b24992365b6b4f1b7da2767e35aa42d6358fa82239151b9bb32a2c0a1313</originalsourceid><addsrcrecordid>eNotT01LxDAUDKJgXT34D3L10DXv5aPNUdbVFRa86Lm8tClWuo0kKbj-eisrcxhmBoYZxm5BrAEQ7mEN1moJ6owVoFGUtUZ1zgohBJTKGnPJrlL6XKSupS3Y4_a7HTLlIUw89Jz4zo-HjzDmHx59ChPlEPk8dT4uWZ6jm0c_Ze7C4lE88pGOPl6zi57G5G_-ecXen7Zvm125f31-2TzsyxaUwLJ2nTEOlbUojXbGqR5c1RFWpvJSEynsjNR1TzWitKDBWeckEraCQIJcsbtTbxtDStH3zVccDsuMBkTzd79ZcLovfwFZAEvZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Excitation of a Helmholtz resonator under a turbulent boundary layer</title><source>AIP Acoustical Society of America</source><creator>Panton, R. L. ; Miller, J. M.</creator><creatorcontrib>Panton, R. L. ; Miller, J. M.</creatorcontrib><description>A zero-pressure-gradient boundary layer on the fuselage of a glider was used to excite a Helmholtz resonator. The resonator was constructed so the orifice was flush with the surface. Nominal resonator frequencies were chosen so they would tune with different portions of the boundary layer wall pressure spectrum. The resonators were excited at both the Helmholtz frequency and a standing wave frequency. The results show a shift in the Helmholtz frequency when the boundary layer is present. This shift indicates the degree to which the turbulence interacts with the acoustic motion in the orifice and modifies the end correction. In several cases extremely high cavity responses were observed. These cases produced measurable sound in the free stream. The existence of this phenomenon correlates with the parameter ωd/u* (ω = resonance frequency, d = orifice diameter, u* = friction velocity). [This work was supported by NASA Ames Research Center.]</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.1995314</identifier><language>eng ; jpn</language><ispartof>The Journal of the Acoustical Society of America, 1975-04, Vol.57 (S1), p.S57-S57</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1402-8bd66b24992365b6b4f1b7da2767e35aa42d6358fa82239151b9bb32a2c0a1313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Panton, R. L.</creatorcontrib><creatorcontrib>Miller, J. M.</creatorcontrib><title>Excitation of a Helmholtz resonator under a turbulent boundary layer</title><title>The Journal of the Acoustical Society of America</title><description>A zero-pressure-gradient boundary layer on the fuselage of a glider was used to excite a Helmholtz resonator. The resonator was constructed so the orifice was flush with the surface. Nominal resonator frequencies were chosen so they would tune with different portions of the boundary layer wall pressure spectrum. The resonators were excited at both the Helmholtz frequency and a standing wave frequency. The results show a shift in the Helmholtz frequency when the boundary layer is present. This shift indicates the degree to which the turbulence interacts with the acoustic motion in the orifice and modifies the end correction. In several cases extremely high cavity responses were observed. These cases produced measurable sound in the free stream. The existence of this phenomenon correlates with the parameter ωd/u* (ω = resonance frequency, d = orifice diameter, u* = friction velocity). [This work was supported by NASA Ames Research Center.]</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNotT01LxDAUDKJgXT34D3L10DXv5aPNUdbVFRa86Lm8tClWuo0kKbj-eisrcxhmBoYZxm5BrAEQ7mEN1moJ6owVoFGUtUZ1zgohBJTKGnPJrlL6XKSupS3Y4_a7HTLlIUw89Jz4zo-HjzDmHx59ChPlEPk8dT4uWZ6jm0c_Ze7C4lE88pGOPl6zi57G5G_-ecXen7Zvm125f31-2TzsyxaUwLJ2nTEOlbUojXbGqR5c1RFWpvJSEynsjNR1TzWitKDBWeckEraCQIJcsbtTbxtDStH3zVccDsuMBkTzd79ZcLovfwFZAEvZ</recordid><startdate>19750401</startdate><enddate>19750401</enddate><creator>Panton, R. L.</creator><creator>Miller, J. M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19750401</creationdate><title>Excitation of a Helmholtz resonator under a turbulent boundary layer</title><author>Panton, R. L. ; Miller, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1402-8bd66b24992365b6b4f1b7da2767e35aa42d6358fa82239151b9bb32a2c0a1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>1975</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panton, R. L.</creatorcontrib><creatorcontrib>Miller, J. M.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panton, R. L.</au><au>Miller, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitation of a Helmholtz resonator under a turbulent boundary layer</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1975-04-01</date><risdate>1975</risdate><volume>57</volume><issue>S1</issue><spage>S57</spage><epage>S57</epage><pages>S57-S57</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>A zero-pressure-gradient boundary layer on the fuselage of a glider was used to excite a Helmholtz resonator. The resonator was constructed so the orifice was flush with the surface. Nominal resonator frequencies were chosen so they would tune with different portions of the boundary layer wall pressure spectrum. The resonators were excited at both the Helmholtz frequency and a standing wave frequency. The results show a shift in the Helmholtz frequency when the boundary layer is present. This shift indicates the degree to which the turbulence interacts with the acoustic motion in the orifice and modifies the end correction. In several cases extremely high cavity responses were observed. These cases produced measurable sound in the free stream. The existence of this phenomenon correlates with the parameter ωd/u* (ω = resonance frequency, d = orifice diameter, u* = friction velocity). [This work was supported by NASA Ames Research Center.]</abstract><doi>10.1121/1.1995314</doi></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1975-04, Vol.57 (S1), p.S57-S57
issn 0001-4966
1520-8524
language eng ; jpn
recordid cdi_crossref_primary_10_1121_1_1995314
source AIP Acoustical Society of America
title Excitation of a Helmholtz resonator under a turbulent boundary layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitation%20of%20a%20Helmholtz%20resonator%20under%20a%20turbulent%20boundary%20layer&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Panton,%20R.%20L.&rft.date=1975-04-01&rft.volume=57&rft.issue=S1&rft.spage=S57&rft.epage=S57&rft.pages=S57-S57&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.1995314&rft_dat=%3Ccrossref%3E10_1121_1_1995314%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true